Quiconque a, un jour, reçu une décharge électrique, peut affirmer qu'elle était bien réelle et qu'elle n'avait rien d'imaginaire. Alors, d'où sort le j des formules d'impédances? Nous allons essayer de l'illustrer en calculant, sans utiliser le formalisme des impédances, le courant qui circule par un circuit formé par une résistance, une inductance et un condensateur en série.
Le circuit sera alimenté par une tension sinusoïdale et nous avons attendu assez longtemps pour que tous les phénomènes transitoires du début se soient estompés. Nous sommes en régime permanent. Comme le système est linéaire, le courant du régime permanent sera aussi sinusoïdal et aura la même fréquence que la source originale. La seule chose que nous ignorons est son amplitude et le déphasage que le courant peut avoir par rapport à la tension d'alimentation. Ainsi, si la tension d'alimentation est
où
La définition d'inductance nous dit que :
La définition de condensateur nous dit que
Ainsi, l'équation à resoudre est :
C’est-à-dire, il faut trouver les valeurs de
Imaginons maintenant que nous alimentons un circuit identique avec une autre source de tension sinusoïdale dont la seule différence est qu'elle commence avec un quart de période de retard. C’est-à-dire délivrant une tension égale à
Il y a des signes qui ont changé car le cosinus retardé se transforme en sinus, mais le sinus retardé se transforme en
Maintenant nous allons additionner les deux équations après avoir multiplié la seconde par j. L'idée est de pouvoir transformer les expressions de la forme
Comme
on déduit:
Le terme de gauche comprend les deux inconnues que nous voulions calculer: l'amplitude et la phase du courant. Son amplitude sera égale au module du nombre complexe de droite et sa phase sera égale à l'argument du nombre complexe de droite.
Mais le terme de droite est la formule habituelle à laquelle nous arrivons quand nous traitons les impédances des résistances, inductances et condensateurs de la même façon que l'on traite les résistances dans la loi d'Ohm. La formule est exactement celle que nous écrivons quand nous utilisons le formalisme de impédances. On reconnaît au dénominateur les impédances de la résistance, l'inductance et le condensateur. Ce n'est pas inutile de repeter que quand nous écrivons:
nous supposons que la personne qui lit cette formule sait l'interpréter et ne va pas croire que le courant puisse être complexe ou imaginaire. La même supposition est implicite quand nous retrouvons des expressions comme "nous alimentons avec une tension