Impédance (électricité) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples

Une seule source

Inductance et résistance en série alimentées par une source sinusoïdale.

Dans le diagramme de droite nous avons une source sinusoïdale \scriptstyle{V=10\cos(\omega t)} de 10 volts d'amplitude et de 10 kHz de fréquence. En série nous avons une inductance de 10 mH et une résistance de 1,2 k \scriptstyle{\Omega} .
Calculons le courant \scriptstyle{I} qui circule dans le circuit :

I =\textstyle{{V\over Z_L + Z_R}={V\over j\omega L + R}={10\over j2\pi 10^4 0,01 + 1200} }
\textstyle{={10\over 1200 + j628,3}}=0{,}00654-j0{,}003424\,\, A

Le module de ce courant sera :

I =\left|\textstyle{{10\over 1200 + j628,3}}\right|=7,38\,mA

Comme la tension était en valeur crête (amplitude), le courant obtenu l'est aussi. Le courant efficace est  I_\mathrm{eff}=\scriptstyle{{7,38\over\sqrt{2} }}=5,22 mA
La phase du courant est l'argument du nombre complexe : \scriptstyle{{10\over 1200 + j628,3}}  :

\mathrm{arg}\left(\textstyle{{10\over 1200 + j628,3}}\right)= -0{,}5235 = -0{,}4823 \,\, \mathrm{rad} = -27{,}6^\circ .

Le courant est en retard de phase par rapport à la tension d'alimentation. Ceci est logique puisque le circuit est inductif.

Diagramme de Fresnel d'une bobine et une résistance en série. Le cercle en gris ne sert que comme aide au dessin de l'angle droit entre la tension sur la résistance et l'inductance.

Seule la résistance dissipe de la puissance :

 P_R= \textstyle{1\over 2}R\left|I\right|^2=\textstyle{1\over 2}1200\cdot\left(7{,}38\,10^{-3}\right)^2=32{,}7\,\,mW

Le \scriptstyle{1\over2} apparaît parce que la valeur du courant utilisée est la valeur crête.

La tension aux bornes de la résistance est :

\scriptstyle{V_R=I\,R=(0{,}00654-j0{,}003424)\,1200=7{,}84-j4{,}109 \,\,V_\mathrm{crete}}

La tension efficace que l'on lirait sur un voltmètre serait le module de cette tension, divisé par racine de 2 : \scriptstyle{6{,}2\, V_\mathrm{eff}}

La tension aux bornes de l'inductance est :

\scriptstyle{V_L=j\omega L\,I\,=j628{,}3\,(0{,}00654-j0{,}003424)= 2{,}15+j4{,}109\, V_\mathrm{eff}}

La tension efficace lue avec un voltmètre serait :  \scriptstyle{3,3\, V_\mathrm{eff} }

On peut constater que l'addition de deux tensions « complexes » donne bien (aux arrondis près) la tension d'alimentation. Par contre, l'addition de deux tensions lues avec le voltmètre donne une tension plus élevée que celle de l'alimentation (  \scriptstyle{7,07 V_\mathrm{eff}} ). C'est le résultat typique des mesures faites avec un voltmètre sur des circuits dont les tensions ne sont pas en phase.

Deux sources déphasées

Condensateur et résistance en série entre deux sources sinusoïdales déphasées.

Dans le circuit de droite, un condensateur de \scriptstyle{1\,\mu F} et une résistance \scriptstyle{3\,k\Omega} en série, sont branchés entre deux sources sinusoïdales. Nous prenons comme sources deux phases du réseau triphasé. La source de gauche sera notre source de référence. \scriptstyle{V_1=230\sqrt{2}\cos(314\,t)} . celle de droite est en avance de phase de \scriptstyle{2\pi/3} . Donc \scriptstyle{V_2=230\sqrt{2}\cos(314\,t + {2\pi\over 3})} . Avec le formalisme d'impédances, la source de gauche s'écrira \scriptstyle{V_1=230\,V_\mathrm{eff}} et la source de droite s'écrira \scriptstyle{V_2=230\,e^{j{2\pi\over 3}}\,V_\mathrm{eff}} .

Commençons par calculer la différence de tension entre les deux sources :

\textstyle{V_{12}=230\,\left(1- e^{j{2\pi\over 3}}\right) =230\,\left(1-\cos\left(\textstyle{{2\pi\over 3}}\right)-j\sin\left(\textstyle{{2\pi\over 3}}\right)\right)}\,
\textstyle{=230\,(1{,}5-j0{,}866)=345-j199{,}19\, V_\mathrm{eff}=398{,}37 e^{-j0{,}5236}}\,

Le module de cette tension est  \scriptstyle{398{,}37 V_\mathrm{eff}} , et elle est en retard de 0,5236 radians (30°) par rapport à la tension de référence.

Diagramme de Fresnel correspondant au deuxième exemple. Le premier cercle sert de guide pour les tensions de deux sources. Le second pour l'angle droit entre la tension du condensateur et celle de la résistance.

Le courant qui circule est :

\textstyle{I = {V_{12}\over R +\scriptstyle{1\over j\omega C}} = {398{,}37\,e^{-j0{,}5236}\over {3000 - j3185}}= {398{,}37\, e^{-j0{,}5236}\over 4375{,}41\, e^{-j0{,}8153}}= \scriptstyle{0{,}0910}\, e^{j0{,}2917}}

Comme les valeurs de départ étaient des valeurs efficaces, le courant aussi est une valeur efficace de 91 mA et en avance de phase de 16,71° par rapport à la tension de référence.

La tension aux bornes de la résistance est :

\scriptstyle{V_R=R\,I=3000\cdot 0{,}0910\, e^{j0{,}2917}=273\, e^{j0{,}2917}V_\mathrm{eff}    }

La tension aux bornes du condensateur est :

\scriptstyle{V_C=Z_C\,I=-j3185\cdot 0{,}0910\, e^{j0{,}2917}=3185\, e^{-j{\pi\over 2}}0{,}0910\, e^{j0{,}2917}=289{,}83\, e^{-j1{,}2791}V_\mathrm{eff}    } .

La tension aux bornes du condensateur est en retard de phase de 73,3° par rapport à la tension de référence. Comme précédemment, l'addition des modules des tensions (celles que l'on mesurerait avec un voltmètre) sur la résistance et le condensateur (563 V) est supérieure à la tension appliquée (398 V).

La tension au point A du circuit sera :

 V_A= V_1-V_C=230 -289{,}83\, e^{-j1{,}2791}= 230 - (83,35-j277{,}6)=146.65+j277{,}6 = 314\,e^{j1{,}085} \,V_\mathrm{eff}

La tension au point A est plus élevée que la tension de chacune des sources.

Page générée en 0.111 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise