Nom des grands nombres - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Système d'Archimède

Un des premiers exemples connus est le décompte que fit Archimède du nombre de grains de sable que pouvait contenir l'univers, dans l'Arénaire (Ψάμμιτης). Pour cela, il généralisa le système de numération grec, dont le terme le plus élevé s'appelait la myriade (104), ce qui permettait donc aux grecs de compter jusqu'à 99 999 999 (soit 108-1, la myriade de myriade n'ayant pas de nom).

Archimède appela ces nombres nommables en grec des « nombres de premier ordre » ; et appela la myriade de myriade, soit 108, l'unité de base des « nombres de deuxième ordre ». En prenant ce nombre comme nouvelle unité, Archimèdes était capable de nommer 99 999 999 nombres « de deuxième ordre », jusqu'à 108·108=1016. Ce nombre est à son tour pris comme l'unité des « nombres de troisième ordre », et ainsi de suite.

Archimède continua sa construction logique pour tous les « ordres » qui pouvaient être nommés en grec, c’est-à-dire jusqu'au nombre d'ordre une myriade de myriade, soit (10^8)^{(10^8)}=10^{8\cdot 10^8} , fin naturelle de cette série de désignation.

Archimède prolongea cette construction en prenant à nouveau ce nombre comme unité de base, ce qui lui permit d'étendre le système de dénomination jusqu'à \left((10^8)^{(10^8)}\right)^{(10^8)}=10^{8\cdot 10^{16}}.

À ce point, Archimède se servit de ce système de désignation pour estimer le nombre de grains de sable que pouvait contenir l'univers, parce que « innombrable comme les grains de sable » représentait pour les grecs l'exemple archétypal de quelque chose qui ne pouvait pas être compté. Il trouva comme ordre de grandeur « mille myriades du huitième ordre » (soit 1063).

Autres systèmes de grands nombres

Système Gillion

Proposé par Russ Rowlett, basé sur les préfixes numériques grecs, et les puissances de mille :

Valeur Expression Nom
103 10001 Mille
106 10002 Million
109 10003 Milliard
1012 10004 Tetrillion
1015 10005 Pentillion
1018 10006 Hexillion
1021 10007 Heptillion
1024 10008 Oktillion
1027 10009 Ennillion
1030 100010 Dekillion
Valeur Expression Nom
1033 100011 Hendekillion
1036 100012 Dodekillion
1039 100013 Trisdekillion
1042 100014 Tetradekillion
1045 100015 Pentadekillion
1048 100016 Hexadekillion
1051 100017 Heptadekillion
1054 100018 Oktadekillion
1057 100019 Enneadekillion
1060 100020 Icosillion
Valeur Expression Nom
1063 100021 Icosihenillion
1066 100022 Icosidillion
1069 100023 Icositrillion
1072 100024 Icositetrillion
1075 100025 Icosipentillion
1078 100026 Icosihexillion
1081 100027 Icosiheptillion
1084 100028 Icosioktillion
1087 100029 Icosiennillion
1090 100030 Triacontillion

Système Myriade

Proposé par Donald E. Knuth, ce système est une autre manière de généraliser les myriades grecques: au lieu que chaque « ordre de grandeur » corresponde à un regroupement de quatre chiffres, comme pour Archimède, Knuth considère que chaque ordre de grandeur peut avoir deux fois plus de chiffres que le précédent.

Au delà des noms où l'on reconnaît la présence du « y » caractéristique, il utilise des séparateurs différents pour des groupes de 4, 8, 16, 32 ou 64 chiffres (respectivement la virgule, le point-virgule, et les deux points, l'espace et l'apostrophe ; le séparateur décimal reste le point dans cette notation). Ils sont formés sur des puissances de deux successives des puissances de dix mille (myriade). Ce système permet d'écrire et nommer des nombres énormes (le premier grand nombre qui ne peut être exprimé avec les dénominations classiques est l'oktyllion, la mille-vingt-quatrième puissance de la myriade). Toutefois, le nom « myriade » reste le plus connu car il correspond à une dénomination historique.

Toutefois les noms sont rarement utilisés car ils sont souvent homonymes et homophones d’autres nombres (y compris en anglais où ces noms ont été définis), et créent de nouvelles ambiguïtés avec les échelles courtes et longues.

Valeur Nom Notation
100 Un 1
101 Dix 10
102 Cent 100
103 Mille 1000
104 Myriade 1,0000
105 Dix myriades 10,0000
106 Cent myriades 100,0000
107 Mille myriades 1000,0000
108 Myllion 1;0000,0000
1012 Myriade de myllions 1,0000;0000,0000
1016 Byllion 1:0000,0000;0000,0000
1024 Myllion de byllions 1;0000,0000:0000,0000;0000,0000
1032 Tryllion 1 0000,0000;0000,0000:0000,0000;0000,0000
1064 Quadryllion 1'0000,0000;0000,0000:0000,0000;0000,0000 0000,0000;0000,0000:0000,0000;0000,0000
10128 Quintyllion
10256 Sextyllion
10512 Septyllion
101024 Octyllion
102048 Nonyllion
104096 Decyllion
108192 Undecyllion
1016,384 Duodecyllion
1032,768 Tredecyllion
1065,536 Quattuordecyllion
10131,072 Quindecyllion
10262,144 Sexdecyllion
10524,288 Septendecyllion
101,048,576 Octodecyllion
102,097,152 Novemdecyllion
104,194,304 Vigintyllion
104,294,967,296 Trigintyllion
{10}^{\,\! 4 * 2^{40}} Quadragintyllion
{10}^{\,\! 4 * 2^{50}} Quinquagintyllion
{10}^{\,\! 4 * 2^{60}} Sexagintyllion
{10}^{\,\! 4 * 2^{70}} Septuagintyllion
{10}^{\,\! 4 * 2^{80}} Octogintyllion
{10}^{\,\! 4 * 2^{90}} Nonagintyllion
{10}^{\,\! 4 * 2^{100}} Centyllion
{10}^{\,\! 4 * 2^{1000}} Millillion
{10}^{\,\! 4 * 2^{10000}} Myryllion

Le système Googol

Les termes googol et googolplex furent inventés par Milton Sirotta, neveu du mathématicien Edward Kasner, qui les introduisit dans une publication de 1940, Mathematics and the Imagination, où il décrit cette invention :

Le terme « googol » a été inventé par un enfant, le neveu du Dr Kasner, alors âgé de huit ans. On lui avait demandé d'imaginer un nom pour un nombre très grand, par exemple un 1 suivi d'une centaine de zéros. Il était sûr que ce nombre n'était pas infini, et tout aussi certain qu'il n'avait pas de nom propre. Il suggéra le terme « googol », et dans la foulée en proposa un autre pour un nombre encore plus grand: le « googolplex ». Un googolplex est beaucoup plus grand qu'un googol, mais reste fini, ce que l'inventeur du terme fit rapidement remarquer. Au départ, la définition proposée était un 1, suivi d'autant de zéro qu'on pourrait en écrire sans tomber de fatigue. C'est certainement ce qui risquerait d'arriver si quelqu'un essaye d'écrire un googolplex, mais deux personnes différentes seraient fatiguées au bout d'un temps différent, et ça n'aurait pas de sens que Carnera soit un meilleur mathématicien que Einstein simplement parce qu'il a une meilleure endurance. Pour cette raison, le googolplex est un nombre spécifique, mais avec tellement de zéros derrière son « un » que le nombre de zéros est lui-même d'un googol.

Par la suite, Conway et Guy ont suggéré comme extension que un N-plex corresponde par convention à 10N. Avec ce système, un googol-plex vaut bien 10googol, et un googolplexplex vaut 10googolplex.

D'autres auteurs ont proposé les formes googolduplex, googoltriplex, etc., pour désigner respectivement 10googolplex, 10googolduplex, et ainsi de suite.

10100 Googol
{10}^{\,\!10^{100}} Googolplex
10-N N-minex
10N N-plex
Page générée en 0.080 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise