Le paradoxe de Condorcet est, en réalité, plus une question épineuse relevant de la théorie du choix social, ou un dilemme en démocratie, qu'un pur paradoxe logique.
En 1785, Nicolas de Condorcet publia l’un de ses principaux travaux : l'Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Dans cet ouvrage, il explore le paradoxe de Condorcet, qu’il décrit comme l’intransitivité possible de la majorité : parmi un même électorat, et lors d’une même élection, il est possible qu’une majorité préfère A à B, qu’une autre majorité préfère B à C, et qu’une troisième majorité préfère C à A. Les décisions prises à une majorité populaire par ce mode de scrutin seraient donc incohérentes par rapport à celles que prendrait un individu rationnel. Condorcet précise lui-même, dans ses travaux, comment lever son paradoxe.
On peut se demander si l'on rencontre souvent des cas de paradoxes de Condorcet. Prenons l'Exemple 1 ci-dessus en remplaçant les trois critères par trois individus (X, Y et Z). Les préférences sont :
Individu X : C > B > A
Individu Y : A > C > B
Individu Z : B > A > C
Supposons que l'objet A (ou le projet A en discussion dans un comité de trois membres) est le statu quo, B un changement important et C un changement modéré. L'individu X préfère un changement modéré mais ne veut pas rester au statu quo. L'individu Y préfère le statu quo mais peut se contenter d'un changement modéré. L'individu Z veut un changement important ou alors il préfère rester au statu quo. Dans ce cas, un comité de 3 membres est confronté au paradoxe de Condorcet.
Si X propose d'opposer tout d'abord les objets A et B et ensuite le gagnant (B: grâce aux voix de X et Z) à l’objet restant (C), il obtient le résultat qu’il préfère (l’objet C est choisi).
Si Y propose d’opposer les objets B et C et ensuite le gagnant à A, son objet préféré (A) est choisi.
Si Z propose d’opposer les objets A et C et ensuite le gagnant à B, son objet préféré (B) sera choisi par le comité.
Cette stratégie dans le choix de l’ordre d’objets à soumettre au vote est un argument en faveur de l’élection du président d’une assemblée législative à tour de rôle parmi tous les principaux groupes.
Il suffit de changer les préférences pour supprimer le paradoxe de Condorcet. Par exemple, si les préférences de Y sont A > B > C, l’objet choisi est toujours B, peu importe l’ordre des objets soumis en votation.
Supposons que toutes les préférences soient également probables et le nombre d’individus est très grand. La probabilité de rencontrer le paradoxe de Condorcet augmente avec le nombre d’objets en discussion. Elle est de 8.77% avec 3 objets (le minimum pour trouver le paradoxe) et de 48.87% avec déjà 10 objets.
Le paradoxe de Condorcet ne peut pas se produire si les préférences sont unimodales (à un seul sommet, avec l’intensité des préférences en ordonnée). Par exemple, dans le cas ci-dessus avec les préférences A > B > C pour Y, les préférences des 3 individus ont toutes un seul sommet lorsqu’on trace le profil dans l’ordre A-B-C en abscisse. Par contre dans le cas de l’Exemple 1, il n’y a aucun ordre des objets où toutes les préférences sont à un seul sommet. Dans l’ordre A-B-C c’est Y qui a deux sommets (premier sommet avec A, on descend tout en bas avec B et on remonte à mi-hauteur pour le deuxième sommet avec C) car l’objet A a une préférence forte, B une préférence faible et C une préférence moyenne (A > C > B).