Polyèdre oblique infini - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En géométrie, les polyèdres obliques infinis sont une définition étendue des polyèdres, créés par des faces polygonales régulières, et des figures de sommet non-planaires.

Beaucoup sont directement reliés aux nids d'abeille convexes uniformes, étant la surface polygonale d'un nid d'abeille avec certaines cellules enlevées. En tant que solides, ils sont appelés nids d'abeille partiels et aussi éponges.

Ces polyèdres sont aussi appelés pavages hyperboliques parce qu'ils peuvent être regardés comme reliés aux pavages de l'espace hyperbolique qui ont aussi un angle de déflexion négatif.

Polyèdres obliques réguliers

Selon Coxeter, en 1926 John Flinders Petrie a généralisé le concept de polygones obliques réguliers (polygones non-planaires) aux polyèdres obliques réguliers.

Il existe 3 polyèdres obliques réguliers :

  1. {4,6|4} : 6 carrés sur un sommet (relié au nid d'abeille cubique, construit avec des cellules cubiques, en enlevant deux faces opposées sur chacune et en reliant tous les ensembles de six autour d'un cube sans face).
  2. {6,4|4} : 4 hexagones sur un sommet (relié au nid d'abeille cubique bitronqué, construit avec des octaèdres tronqués avec leurs faces carrées enlevées et reliant les paires de trous ensemble).
  3. {6,6|3} : 6 hexagones sur un sommet (relié au nid d'abeille cubique quart, construit avec des cellules tétraédrique tronquées, en enlevant les faces triangulaires, et en reliant les ensembles de quatre autour d'un tétraèdre sans face).

Leurs figures de sommet sont des polygones obliques, zig-zaggant entre deux plans.

Voici quelques représentations partielles, des vues verticales projetées de leurs figures de sommet obliques et des nids d'abeille uniformes correspondant partiellement.

Six-square skew polyhedron.png
{4,6|4}
Four-hexagon skew polyhedron.png
{6,4|4}
Six-hexagon skew polyhedron.png
{6,6|3}
Six-square skew polyhedron-vf.png
4.4.4.4.4.4
Four-hexagon skew polyhedron-vf.png
6.6.6.6
Six-hexagon skew polyhedron-vf.png
6.6.6.6.6.6
Partial cubic honeycomb.png
Nid d'abeille cubique
Bitruncated cubic honeycomb.png
Cubique bitronqué
Bitruncated alternated cubic honeycomb.jpg
Cubique alterné bitronqué

Polyèdres obliques semi-réguliers

Il existe beaucoup d'autres polyèdres obliques semi-régulier (de sommet uniforme), découverts par A.F. Wells et J.R. Gott (il les ont appelés pseudopolyèdres) dans les années 60.

Skew polyhedron 4446a.png
Un polyèdre oblique prismatique semi-régulier avec une configuration de sommet 4.4.4.6.
200px
Un polyèdre oblique semi-régulier (partiel) avec une configuration de sommet 4.8.4.8. Relié au nid d'abeille cubique omnitronqué.
Skew polyhedron 34444.png
Un polyèdre oblique semi-régulier (partiel) avec une configuration de sommet 3.4.4.4.4. Relié au nid d'abeille cubique runcitronqué.

Polyèdres obliques réguliers prismatiques

Il existe aussi deux formes prismatiques régulières, disqualifiées par Coxeter (parmi d'autres) de l'appellation régulière parce qu'elles ont des faces coplanaires adjacentes.

  1. 5 carrés sur un sommet (deux pavages carrés parallèles connectés par des trous cubiques).
  2. 8 triangles sur un sommet (deux pavages triangulaires parallèles connectés par des trous octaèdriques).

Au-delà de l'espace tridimensionnel euclidien, C. W. L. Garner a déterminé un ensemble de 32 polyèdres obliques réguliers dans un espace tridimensionnel hyperbolique, dérivé des 4 nids d'abeilles hyperboliques réguliers.

Page générée en 0.263 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise