Polynômes orthogonaux - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemple : les polynômes de Legendre

Les polynômes orthogonaux les plus simples sont les polynômes de Legendre pour lesquels l'intervalle d'orthogonalité est ]-1, 1[ et la fonction poids est simplement la fonction constante de valeur 1 :

P_0(x) = 1\,
P_1(x) = x\,
P_2(x) = \frac{3x^2-1}{2}\,
P_3(x) = \frac{5x^3-3x}{2}\,
P_4(x) = \frac{35x^4-30x^2+3}{8}\,
\dots\,

Ils sont tous orthogonaux sur ]-1, 1[ :

\int_{-1}^{1} P_m(x)P_n(x)\,dx = 0\qquad \mathrm{pour}\qquad m \ne n

Tableau des polynômes orthogonaux classiques

Nom et symbole conventionnel Tchebychev, \ T_n Tchebychev
(seconde sorte), \ U_n
Legendre, \ P_n Hermite (forme physique), \ H_n
Limite d'orthogonalité -1, 1\, -1, 1\, -1, 1\, -\infty, \infty
Poids, W(x)\, (1-x^2)^{-1/2}\, (1-x^2)^{1/2}\, 1\, e^{-x^2}
Normalisation T_n(1)=1\, U_n(1)=n+1\, P_n(1)=1\, Coefficient dominant = 2^n\,
Carré de la norme h_n\, \left\{ \begin{matrix} \pi   &:~n=0 \\ \pi/2 &:~n\ne 0 \end{matrix}\right. \pi/2\, \frac{2}{2n+1} 2^n\,n!\,\sqrt{\pi}
Coefficient dominant k_n\, 2^{n-1}\, 2^n\, \frac{(2n)!}{2^n\,(n!)^2}\, 2^n\,
Coefficient suivant k'_n\, 0\, 0\, 0\, 0\,
Q\, 1-x^2\, 1-x^2\, 1-x^2\, 1\,
L\, -x\, -3x\, -2x\, -2x\,
R(x) =e^{\int \frac{L(x)}{Q(x)}\,dx} (1-x^2)^{1/2}\, (1-x^2)^{3/2}\, 1-x^2\, e^{-x^2}\,
Constante dans l'équation différentielle, {\lambda}_n\, n^2\, n(n+2)\, n(n+1)\, 2n\,
Constante dans la formule de Rodrigues, e_n\, (-2)^n\,\frac{\Gamma(n+1/2)}{\sqrt{\pi}}\, 2(-2)^n\,\frac{\Gamma(n+3/2)}{(n+1)\,\sqrt{\pi}}\, (-2)^n\,n!\, (-1)^n\,
Relation de récurrence, a_n\, 2\, 2\, \frac{2n+1}{n+1}\, 2\,
Relation de récurrence, b_n\, 0\, 0\, 0\, 0\,
Relation de récurrence, c_n\, 1\, 1\, \frac{n}{n+1}\, 2n\,
Nom et symbole Laguerre associé, L_n^{(\alpha)} Laguerre, \ L_n
Limites d'orthogonalité 0, \infty\, 0, \infty\,
Poids, W(x)\, x^{\alpha}e^{-x}\, e^{-x}\,
Normalisation Coefficient dominant = \frac{(-1)^n}{n!}\, Coefficient dominant = \frac{(-1)^n}{n!}\,
Carré de la norme h_n\, 1\, 1\,
Coefficient dominant k_n\, \frac{(-1)^n}{n!}\, \frac{(-1)^n}{n!}\,
Coefficient suivant k'_n\, \frac{(-1)^{n+1}(n+\alpha)}{(n-1)!}\, \frac{(-1)^{n+1}n}{(n-1)!}\,
Q\, x\, x\,
L\, \alpha+1-x\, 1-x\,
R(x) =e^{\int \frac{L(x)}{Q(x)}\,dx} x^{\alpha+1}\,e^{-x}\, x\,e^{-x}\,
Constante dans l'équation différentielle, {\lambda}_n\, n\, n\,
Constante dans la relation de Rodrigues, e_n\, n!\, n!\,
Relation de récurrence, a_n\, \frac{-1}{n+1}\, \frac{-1}{n+1}\,
Relation de récurrence, b_n\, \frac{2n+1+\alpha}{n+1}\, \frac{2n+1}{n+1}\,
Relation de récurrence, c_n\, \frac{n+\alpha}{n+1}\, \frac{n}{n+1}\,
Nom et symbole Gegenbauer, C_n^{(\alpha)} Jacobi, P_n^{(\alpha, \beta)}
Limites d'orthogonalité -1, 1\, -1, 1\,
Poids, W(x)\, (1-x^2)^{\alpha-1/2}\, (1-x)^\alpha(1+x)^\beta\,
Normalisation C_n^{(\alpha)}(1)=\frac{\Gamma(n+2\alpha)}{n!\,\Gamma(2\alpha)}\, if \alpha\ne0 P_n^{(\alpha, \beta)}(1)=\frac{\Gamma(n+1+\alpha)}{n!\,\Gamma(1+\alpha)}\,
Carré de la norme, h_n\, \frac{\pi\,2^{1-2\alpha}\Gamma(n+2\alpha)}{n!(n+\alpha)(\Gamma(\alpha))^2} \frac{2^{\alpha+\beta+1}\,\Gamma(n\!+\!\alpha\!+\!1)\,\Gamma(n\!+\!\beta\!+\!1)} {n!(2n\!+\!\alpha\!+\!\beta\!+\!1)\Gamma(n\!+\!\alpha\!+\!\beta\!+\!1)}
Coefficient dominant k_n\, \frac{\Gamma(2n+2\alpha)\Gamma(1/2+\alpha)}{n!\,2^n\,\Gamma(2\alpha)\Gamma(n+1/2+\alpha)}\, \frac{\Gamma(2n+1+\alpha+\beta)}{n!\,2^n\,\Gamma(n+1+\alpha+\beta)}\,
Coefficient suivant k'_n\, 0\, \frac{(\alpha-\beta)\,\Gamma(2n+\alpha+\beta)}{(n-1)!\,2^n\,\Gamma(n+1+\alpha+\beta)}\,
Q\, 1-x^2\, 1-x^2\,
L\, -(2\alpha+1)\,x\, \beta-\alpha-(\alpha+\beta+2)\,x\,
R(x) =e^{\int \frac{L(x)}{Q(x)}\,dx} (1-x^2)^{\alpha+1/2}\, (1-x)^{\alpha+1}(1+x)^{\beta+1}\,
Constante dans l'équation différentielle, {\lambda}_n\, n(n+2\alpha)\, n(n+1+\alpha+\beta)\,
Constante dans l'équation de Rodrigues, e_n\, \frac{(-2)^n\,n!\,\Gamma(2\alpha)\,\Gamma(n\!+\!1/2\!+\!\alpha)} {\Gamma(n\!+\!2\alpha)\Gamma(\alpha\!+\!1/2)} (-2)^n\,n!\,
Relation de récurrence, a_n\, \frac{2(n+\alpha)}{n+1}\, \frac{(2n+1+\alpha+\beta)(2n+2+\alpha+\beta)}{2(n+1)(n+1+\alpha+\beta)}
Relation de récurrence, b_n\, 0\, \frac{({\alpha}^2-{\beta}^2)(2n+1+\alpha+\beta)}{2(n+1)(2n+\alpha+\beta)(n+1+\alpha+\beta)}
Relation de récurrence, c_n\, \frac{n+2{\alpha}-1}{n+1}\, \frac{(n+\alpha)(n+\beta)(2n+2+\alpha+\beta)}{(n+1)(n+1+\alpha+\beta)(2n+\alpha+\beta)}

Équations différentielles conduisant à des polynômes orthogonaux

Une importante classe des polynômes orthogonaux provient d'une équation différentielle de Sturm-Liouville de la forme

{Q(x)}\,f'' + {L(x)}\,f' + {\lambda}f = 0\,

où Q est un polynôme quadratique donné et L un polynôme linéaire donné. La fonction f est inconnue, et la constante λ est un paramètre. On peut remarquer qu'une solution polynomiale est a priori envisageable pour une telle équation, les degrés des termes étant compatibles. Cependant, les solutions de cette équation différentielle ont des singularités, à moins que λ ne prenne des valeurs spécifiques. La suite de ces valeurs {\lambda}_0, {\lambda}_1, {\lambda}_2 \dots\, conduit à une suite de polynômes solutions P_0, P_1, P_2 \dots\, si l'une des assertions suivantes est vérifiée :

  1. Q est vraiment quadratique, L est linéaire, Q a deux racines réelles distinctes, la racine de L est située entre les deux racines de Q, et les termes de plus haut degré de Q et L ont le même signe.
  2. Q n'est pas quadratique, mais linéaire, L est linéaire, les racines de Q et L sont différentes, et les termes de plus haut degré de Q et L ont le même signe si la racine de L est plus petite que celle de Q, ou inversement.
  3. Q est un polynôme constant non nul, L est linéaire, et le terme de plus haut degré de L est de signe opposé à celui de Q.

Ces trois cas conduisent respectivement aux polynômes de Jacobi, de Laguerre et d'Hermite. Pour chacun de ces cas :

  • La solution est une suite de polynômes P_0, P_1, P_2 \dots\, , chaque P_n\, ayant un degré n, et correspondant au nombre {\lambda}_n\, .
  • L'intervalle d'orthogonalité est limité par les racines de Q.
  • La racine de L est à l'intérieur de l'intervalle d'orthogonalité.
  • En notant R(x) = e^{\int_{x_0}^{x} \frac{L(t)}{Q(t)}\,dt}\, , les polynômes sont orthogonaux sous la fonction poids W(x) =\frac{R(x)}{Q(x)}\,
  • W(x) ne peut pas s'annuler ou prendre une valeur infinie dans l'intervalle, bien qu'il puisse le faire aux extrémités.
  • W(x) peut être choisi positif sur l'intervalle (multiplier l'équation différentielle par -1 si nécessaire)

En raison de la constante d'intégration, la quantité R(x) est définie à une constante multiplicative près. Le tableau ci-dessous donne les valeurs "officielles" de R(x) et W(x).

Formule de Rodrigues

Avec les hypothèses de la section précédente, Pn(x) est proportionnel à \frac{1}{W(x)} \  \frac{d^n}{dx^n}\left(W(x)[Q(x)]^n\right)

équation mieux connue sous le nom de « formule de Rodrigues ». Elle est souvent écrite :

P_n(x) = \frac{1}{{e_n}W(x)} \  \frac{d^n}{dx^n}\left(W(x)[Q(x)]^n\right)

où les nombres en dépendent de la normalisation. Les valeurs de en sont données dans le tableau plus bas.

Pour démontrer cette formule on vérifie, dans chacun des trois cas ci-dessus, que le Pn qu'elle fournit est bien un polynôme de degré n, puis, par intégrations par parties répétées, que pour tout polynôme P, \langle \frac 1 W (WQ^n)^{(n)},P\rangle est égal à (-1)^n\langle Q^n,P^{(n)}\rangle, donc est nul si P est de degré inférieur à n. Cette méthode montre en outre que h_ne_n=(-1)^n n! k_n\int_a^b(Q(x))^nW(x)dx .

Les nombres λn

Avec les hypothèses de la section précédente,

{\lambda}_n =  n \left( \frac{1-n}{2}\ Q'' - L' \right)

(on remarquera que Q étant quadratique et L linéaire, Q'' et L' sont bien des constantes.)

Seconde forme de l'équation différentielle

Avec R(x) = \exp \left(\int_{x_0}^{x} \frac{L(t)}{Q(t)}\,\mathrm{d}t \right)\, .

Alors

(Ry')' = R\,y'' + R'\,y' = R\,y'' + \frac{R\,L}{Q}\,y'

En multipliant maintenant l'équation différentielle

{Q}\,y'' + {L}\,y' + {\lambda}\,y = 0\,

par R/Q, on obtient

R\,y'' + \frac{R\,L}{Q}\,y' + \frac{R\,\lambda}{Q}\,y = 0\,

ou encore

(Ry')' + \frac{R\,\lambda}{Q}\,y = 0\,

C'est la forme normalisée de Sturm-Liouville de l'équation.

Troisième forme de l'équation différentielle

En posant S(x) = \sqrt{R(x)} = \exp \left(\int_{x_0}^{x} \frac{L(t)}{2\,Q(t)}\,\mathrm{d}t \right)\, .

Alors :

S' = \frac{S\,L}{2\,Q}.

En multipliant maintenant l'équation différentielle

{Q}\,y'' + {L}\,y' + {\lambda}\,y = 0\,

par S/Q, on obtient :

S\,y'' + \frac{S\,L}{Q}\,y' + \frac{S\,\lambda}{Q}\,y = 0\,

ou encore

S\,y'' + 2\,S'\,y' + \frac{S\,\lambda}{Q}\,y = 0\,

Mais (S\,y)'' = S\,y'' + 2\,S'\,y' + S''\,y , donc

(S\,y)'' + \left(\frac{S\,\lambda}{Q} - S''\right)\,y = 0,\,

ou, en posant u = Sy,

u'' + \left(\frac{\lambda}{Q} - \frac{S''}{S}\right)\,u = 0.\,
Page générée en 0.187 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise