Solidification - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Voir « solidification » sur le Wiktionnaire.

La solidification est l'opération au cours de laquelle un liquide passe à l'état solide. Cela peut se faire par refroidissement (cas le plus courant), par augmentation de la pression, ou bien par une combinaison des deux.

Il y a de très nombreuses applications industrielles de la solidification : coulée continue d'acier, croissance du Si pour l'électronique, moulage d'implants dentaires...

La solidification se fait en général par précipitation : il y a formation de germes de phase solide au sein du liquide (germination, nucleation en Anglais) puis croissance de ces germes.

À pression constante, la solidification des corps purs se fait à température constante , la chaleur libérée par la solidification (chaleur latente de fusion) compense la chaleur perdue par le refroidissement.

Courbe de solidification.

Dans le cas d'un mélange de corps purs, la température baisse en général au cours de la solidification (sauf dans le cas des eutectiques).

Surfusion

La courbe de refroidissement est en fait légèrement différente. La température du liquide descend en dessous de la température de fusion, puis remonte brusquement pour former le plateau. Ceci s'appelle la surfusion.

La surfusion est due à l'énergie d'interface solide-liquide (tension superficielle). De manière simplifiée, on peut considérer que les petits germes de solide sont instables car ils sont dissous par l'agitation thermique, il faut attendre que le liquide soit « plus calme » pour qu'ils puissent se former. De manière plus rigoureuse, vu sous un angle thermodynamique, l'énergie libérée par la solidification (chaleur latente de fusion) ne compense pas l'énergie dépensée pour créer l'interface solide-liquide. Le liquide continue donc à se refroidir sans solidifier.

Lorsque le gain d'énergie est suffisant pour compenser la création de l'interface, les germes se créent très rapidement, et la chaleur libérée fait remonter la température. Puis, les germes croissent lentement, ce qui correspond au plateau.

Le gain d'énergie devient suffisant lorsque :

  • la température est suffisamment basse ;
  • une impureté vient diminuer l'énergie d'interface ; c'est le fameux exemple des chevaux du lac Ladoga rapporté par Malaparte (1942).

Bilan énergétique

Considérons un germe sphérique de rayon r. Il a un volume V de 4/3·π·r3, ce qui correspond à la solidification d'une masse m = ρ·V si ρ est la masse volumique du solide. L'énergie EV libérée est donc

EV = -L·m = -L·ρ·4/3·π·r3.

Ce germe a une surface S = 4·π·r². Pour le créer, il faut donc dépenser une énergie ES qui vaut σ·S, où σ est la tension superficielle. On a donc

ES = σ·4·π·r²

La création du germe n'est possible que si le système diminue son l'énergie, c'est-à-dire si

EV + ES < 0

soit

-L·ρ·4/3·π·r3 + σ·4·π·r² < 0

et donc si

r > \frac{3 \sigma}{L \rho}

Comme σ diminue avec la température, les petits germes seront stables à basse température. Lorsque le système a juste la température de fusion, le rayon minimal est trop grand pour qu'un germe puisse se former. Ce rayon critique ne peut diminuer que si σ diminue, donc soit par l'arrivée d'une impureté, soit par la diminution de la température. L'impureté peut aussi se conduire comme un pré-germe de rayon suffisant.

Pour favoriser la solidification, on peut ainsi introduire un floculant (impureté), ou bien créer des défauts dans la paroi du récipient (par exemple des rayures ou des aspérités).

Page générée en 0.063 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise