Dans le cas où le solide formé est cristallin, la structure du lingot est en général la suivante :
Considérons un système binaire, c'est-à-dire un mélange de deux corps purs A et B. Le diagramme binaire de ce système permet de prédire la manière dont la solidification va se passer. Prenons pour simplifier le cas d'un système à solution solide unique.
Prenons un liquide composé de 100-C0 % de phase A et de C0 % de phase B (on utilise en général des concentrations massiques).
On suppose ici qu'à tout instant, tout le solide est à l'équilibre avec le liquide, ce qui signifie notamment que le solide est homogène. En pratique, cela signifie que la solidification est lente, et que la diffusion en phase solide permet d'homogénéiser le solide (la convection permet d'homogénéiser la phase liquide).
On met un liquide dans un moule, et on laisse le mélange refroidir. À la température T1 définie par l'intersection entre le liquidus et la droite verticale correspondant à C0, le premier germe solide se forme ; il se forme contre la paroi du récipient puisque c'est la partie la plus froide.
Ce premier germe est un solide à l'équilibre avec du liquide à T1 ; il se trouve donc sur le solidus, et a une concentration C1 ; on remarque que C1 vaut presque 0, c'est du corps A presque pur.
À une température donnée T2, la droite horizontale correspondant à cette température coupe le solidus à une concentration C2s et le liquidus à une concentration C2l. À cette température, le solide a une concentration 100-C2s de A ; le solide étant plus riche en A que le mélange initial, le liquide s'est appauvri et ne contient plus que 100-C2l % de A.
À la fin de la solidification, le solide a une teneur 100-C0 en A. Ceci détermine la température de fin de fusion T3. La dernière goutte de liquide à solidifier a une teneur 100-C3l en A, très faible, c'est presque du B pur ; comme le solide est encore légèrement plus riche en A que le mélange initial, cette goutte achève de « diluer » A.
Lorsque la solidification se fait à l'équilibre, le diagramme de phase permet de savoir quelle est la proportion de mélange qui a solidifié et quelle proportion reste liquide.
À une température T2 donnée, les cristaux formés ont une concentration C2s en A, et le liquide a une concentration C2l en A. La proportion de matière sous forme liquide et solide est donnée par la règle des leviers :
C'est comme si l'on avait une balance dont le pivot n'est pas au centre du fléau, un des plateaux portant le liquide, l'autre le solide (d'où la référence au moment d'une force).
Maintenant, nous allons considérer que la solidification est trop rapide pour que la diffusion permette l'homogénéisation du solide. Alors, seule la couche superficielle du solide au contact avec le liquide est à l'équilibre ; la partie du solide sous cette couche superficielle est isolée du liquide et ne contribue donc pas à l'équilibre de solidification. C'est comme si la concentration C0 évoluait au cours de la solidification ; en effet, le liquide s'appauvrit en A et s'enrichit en B.
Comme précédemment, le premier germe est un solide à l'équilibre avec du liquide à T1 ; il se trouve donc sur le solidus, et a une concentration C1 ; on remarque que C1 vaut presque 0, c'est du corps A presque pur. Ces premiers germes se forment sur la paroi du moule (la partie la plus froide).
Le liquide s'appauvrit en A au fur et à mesure. À une température donnée T2, ce n'est pas la solide en entier qui a une concentration C2s, mais uniquement les germes formés à ce moment-là.
Le liquide continue à s'appauvrir au cours de la solidification, et les derniers germes formés, qui se trouvent au centre du moule, sont très riches en B pur ; la température de fin de fusion T3 est alors inférieure à la température de solidification à l'équilibre.
On voit que la pièce formée est hétérogène ; c'est la raison pour laquelle les glaçons ont des bulles au milieu (l'eau pure gèle sur les côtés et rejette l'air dissout vers le centre, jusqu'au moment où on a de l'air pur). Ce phénomène est appelé ségrégation.