Super-Pluton - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La simulation

Lykawka a utilisé deux des codes informatiques orbitaux pour résoudre les équations de mouvement d'un système de planètes et de petits corps dans le système solaire. Ces codes ont été utilisés dans d'autres recherches par d'autres chercheurs aussi. Après l'installation des conditions initiales et le modèle incluant les planètes + la planète hypothétique + des milliers de petits corps (représentant les objets de ceinture Kuiper primordiaux), il a exécuté des centaines d'utilisation de simulations sur la moyenne de 40 PC ordinaires distribués dans des réseaux à l'université.

En résumé, ceux-ci sont les résultats principaux de mon modèle :

  • Il reproduit la distribution orbitale entière de la ceinture Kuiper à un niveau détaillé sans précédent.

C'est-à-dire les quatre classes principales de TNOS, leur structure orbitale et plusieurs autres caractéristiques sont reproduites. Cela inclut aussi une explication des TNOS qui ont des orbites particulières, comme Eris, 2004 XR190, 2000 CR105 et Sedna.

  • Il explique l'excitation orbitale de TNOS dans la région 40-50AU avec la structure orbitale finale remarquablement semblable aux observations.
  • Il explique complètement l'existence du bord extérieur de la ceinture de Kuiper .
  • Il offre plusieurs prédictions, comme l'existence possible d'une planète extérieure résidente dans le système solaire et les nouveaux types de TNOS dans des orbites plus inclinées et/ou plus éloignées. C'est très utile de tester le modèle et motiver des observations futures.

Trois points de la mise en évidence de cette planète (d'après Lykawka)

les principaux objets de kuiper (TNO).

Il y a 3 « mystères » principaux au sein de la ceinture Kuiper. Le point de départ de la recherche a été motivé par les contraintes suivantes. Le modèle de Lykawa répond à ces mystères.

Les épars

Il est très difficile d'expliquer pourquoi plusieurs TNOS possèdent des orbites tout à fait inclinées et/ou allongées dans des distances entre environ 40 et 50 AU, dans la prétendue « région classique » de la ceinture. En outre, la preuve de l'existence de deux sous-populations TNO avec des propriétés différentes dans la même région reste à faire. La perturbation de gravitation du Neptune ne peut pas expliquer toutes ces caractéristiques, mais cette planète hypothétique pourrait perturber l'axe de nombreuses planètes.

La falaise de Kuiper

La ceinture de Kuiper.

La résonance 1:2 semble être une limite à la ceinture de Kuiper, au-delà de laquelle peu d'objets sont connus. On ignore s'il s'agit du bord extérieur de la ceinture classique ou juste du début d'une lacune très large. Des objets ont été découverts à la résonance 2:5, vers 55 UA, très en dehors de la ceinture classique qui sont pour la plupart extrêmement excentriques.

Historiquement, les premiers modèles de la ceinture de Kuiper suggéraient que le nombre de grands objets augmenterait d'un facteur deux au-delà de 50 UA. La chute brutale du nombre d'objets après cette distance, connue sous le nom de « falaise de Kuiper », fut complètement inattendue et reste inexpliquée en 2008.

Cette énigme est expliquée par la théorie d'« une nouvelle planète » qui démontre qu'un corps massif peut bloquer la ceinture. Ce processus est le même que pour Beta Pictoris et Fomalhaut.

Selon des observations et des études basées sur la statistique de découverte, il y a un manque de TNOS dans des orbites circulaires aux distances au-delà de 45AU. De plus, la diminution du nombre de TNOS du réservoir 40-50AU aux régions plus éloignées est trop brusque. En prenant en compte l'existence de cette planète, la ceinture Kuiper on peut entièrement expliquer le bord extérieur pour la première fois.

Découverte de corps particuliers

La structure orbitale entière de TNOS dans la ceinture Kuiper est très complexe. Il y a au moins 4 classes distinctes de TNOS avec des orbites diverses (de la circulaire à très allongé) et des inclinations jusqu'à 50 degrés à l'heure actuelle. Particulièrement le groupe de TNOS dont les orbites sont « détachées » du système solaire. C'est-à-dire leur distance la plus proche au Soleil le long de leurs orbites est trop loin pour subir n'importe quelle perturbation importante du Neptune. Ainsi, il est très difficile de comprendre l'origine de TNOS isolés et d'autres TNOS dans des orbites particulières (un exemple célèbre est l'objet Sedna). D'autre part, le modèle de lykawka peut reproduire la distribution orbitale de la ceinture Kuiper avec ses quatre classes principales de TNOS. En effet, leur structure orbitale et plusieurs autres caractéristiques sont reproduits à un niveau détaillé sans précédent. Cela inclut aussi une explication à TNOS dans des orbites particulières, comme Éris, 2004 XR190, 2000 CR105 et Sedna.

Des signes auprès de Sedna

L'étrange orbite de Sedna, une planète naine située entre la ceinture de Kuiper et le nuage de Hills, présente des irrégularités qui pourraient constituer les signes de la présence d'une planète perturbant son orbite. Les études de Patryk Lykawka pour déterminer l'orbite de la planète hypothétique se sont basées sur l'étrange orbite de Sedna et pour établir une simulation.

Cette simulation répond au mécanisme de Kozai impliquant les effets de résonance qui ont modelé la répartition actuelle des planètes entourant le Soleil. Elle est de plus en accord avec la dynamique du système solaire, la masse de la Ceinture de Kuiper et la position de Neptune.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise