Sédénion
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

En mathématiques, les sédénions, notés \mathbb S, forment une algèbre à 16 dimensions sur les réels. Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : 1) Les sédénions obtenus par application de la construction de Cayley-Dickson et 2) les sédénions coniques (ou algèbre (L'algèbre, mot d'origine arabe al-jabr (الجبر), est la branche des mathématiques qui étudie, d'une façon générale, les structures algébriques.) M) à partir des arithmétiques des hypernombres.

Les sédénions de la construction de Cayley-Dickson

Arithmétique (L'arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes. On l'appelle plus généralement la...)

À l'instar des octonions, la multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) des sedénions n'est ni commutative ni associative. De plus, par rapport aux octonions, les sédénions perdent la propriété d'être alternatifs.

Les sédénions ont un élément neutre multiplicatif 1 et des inverses pour la multiplication, mais ils ne forment pas une algèbre de division (La division est une loi de composition qui à deux nombres associe le produit du premier par l'inverse du second. Si un nombre est non nul, la fonction...). Cela parce qu'ils ont des diviseurs de zéro (Le chiffre zéro (de l’italien zero, dérivé de l’arabe sifr, d’abord transcrit zefiro en italien) est un symbole marquant une position vide dans...).

Chaque sedénion est une combinaison (Une combinaison peut être :) linéaire, à coefficients réels, des sédénions unités 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 et e15, qui forment la base de l'espace vectoriel (En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d'effectuer des combinaisons linéaires. Pour une introduction au concept de vecteur, voir l'article...) des sédénions. La table de multiplication (Une table de multiplication affiche dans les lignes et colonnes le résultat de la multiplication de petits nombres entiers naturels.) de ces sédénions unitaires est établie comme suit :

× 1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
1
1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
e1
e1
-1
e3
-e2
e5
-e4
-e7
e6
e9
-e8
-e11
e10
-e13
e12
e15
-e14
e2
e2
-e3
-1
e1
e6
e7
-e4
-e5
e10
e11
-e8
-e9
-e14
-e15
e12
e13
e3
e3
e2
-e1
-1
e7
-e6
e5
-e4
e11
-e10
e9
-e8
-e15
e14
-e13
e12
e4
e4
-e5
-e6
-e7
-1
e1
e2
e3
e12
e13
e14
e15
-e8
-e9
-e10
-e11
e5
e5
e4
-e7
e6
-e1
-1
-e3
e2
e13
-e12
e15
-e14
e9
-e8
e11
-e10
e6
e6
e7
e4
-e5
-e2
e3
-1
-e1
e14
-e15
-e12
e13
e10
-e11
-e8
e9
e7
e7
-e6
e5
e4
-e3
-e2
e1
-1
e15
e14
-e13
-e12
e11
e10
-e9
-e8
e8
e8
-e9
-e10
-e11
-e12
-e13
-e14
-e15
-1
e1
e2
e3
e4
e5
e6
e7
e9
e9
e8
-e11
e10
-e13
e12
e15
-e14
-e1
-1
-e3
e2
-e5
e4
e7
-e6
e10
e10
e11
e8
-e9
-e14
-e15
e12
e13
-e2
e3
-1
-e1
-e6
-e7
e4
e5
e11
e11
-e10
e9
e8
-e15
e14
-e13
e12
-e3
-e2
e1
-1
-e7
e6
-e5
e4
e12
e12
e13
e14
e15
e8
-e9
-e10
-e11
-e4
e5
e6
e7
-1
-e1
-e2
-e3
e13
e13
-e12
e15
-e14
e9
e8
e11
-e10
-e5
-e4
e7
-e6
e1
-1
e3
-e2
e14
e14
-e15
-e12
e13
e10
-e11
e8
e9
-e6
-e7
-e4
e5
e2
-e3
-1
e1
e15
e15
e14
-e13
-e12
e11
e10
-e9
e8
-e7
e6
-e5
-e4
e3
e2
-e1
-1

Les sédénions coniques / algèbre M à 16-dim.

Arithmétique

À la différence des sédénions issus de la construction de Cayley-Dickson, qui sont construits sur l'unité (1) et 15 racine de l'unité négative (-1), les sédénions coniques sont construits sur 8 racines carrées de l'unité positive et négative. Ils partagent la non-commutativité et la non-associativité avec l'arithmétique des sédénions de Cayley-Dickson ("sédénions circulaire"), néanmoins les sédénions coniques sont modulaires, alternatifs, flexibles mais ne sont pas associatifs de puissances.

Les sédénions coniques contiennent à la fois les sous-algèbres des octonions (circulaires), les octonions coniques et les octonions hyperboliques. Les octonions hyperboliques sont de manière calculatoire équivalents aux octonions fendus.

Les sédénions coniques contiennent des éléments idempotents, nilpotents et des diviseurs de zéro. Avec l'exception de leurs éléments nilpotents et zéro, l'arithmétique est close avec le respect des opérations de puissance (Le mot puissance est employé dans plusieurs domaines avec une signification particulière :) et de logarithme (En mathématiques, une fonction logarithme est une fonction définie sur à valeurs dans , continue et transformant un produit en somme. Le logarithme de base a où a...).

Sujets liés

  • nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) hypercomplexe
    • quaternions
    • biquaternions
    • octonions

Bibliographie

  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions, Applied Mathematics and Computation 28:47-72 (1988)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Further results, Applied Mathematics and Computation, 84:27-47 (1997)
  • Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis, Applied Mathematics and Computation, 115:77-88 (2000)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Part III, Online at http://www.kevincarmody.com/math/sedenions3.pdf (2006)
Articles de mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et...) en rapport avec la notion de nombre
Définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) des nombres · Entiers naturels · Entiers relatifs · Nombres transfinis  · Nombres décimaux · Nombres rationnels · Nombres constructibles · Nombres algébriques · Nombres transcendants · Nombres calculables · Nombres réels · Nombres complexes · Nombres hypercomplexes · Quaternions · Octonions · Sédénions · Nombres hyperréels · Nombres surréels · Nombres ordinaux · Nombres cardinaux · Nombres p-adiques · Nombres normaux · Suite d'entiers · Constantes mathématiques · Grands nombres · Nombres incalculables · Infiniments petits · Infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille.)
Page générée en 0.064 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique