Détecteur à semiconducteur - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Fonctionnement

La perte d'énergie d'un photon dans la matière est principalement due à trois effets : effet photoélectrique, effet Compton, création de paires électron-positron (figure : coefficient d'absorption linéique dans l'aluminium).

Interaction rayonnement-matière

Une particule ionisante interagit au sein du détecteur. Elle éjecte un électron de son atome et celui-ci provoque d'autres ionisations en chaine. Après relaxation, on a généré sur un certain volume un nuage de porteurs libres : électrons dans la bande de valence et de trous dans la bande de conduction. Le nombre total de paires électron-trous généré est en moyenne proportionnel à l'énergie déposée par la particule. L'énergie nécessaire pour créer une paire est supérieure à la largeur de gap et dépend des processus de relaxation mis en jeu dans le semi-conducteur.

La variance sur le nombre de paire généré est égal à F \times N où F est un facteur adimensionnel appelé facteur de Fano. Il traduit le nombre moyen d'évènements physique indépendants mis en jeu pour la génération d'une paire. En pratique F < 1.

Transport des charges

Un champ électrique est appliqué au détecteur à l'aide d'électrodes : anodes polarisées positivement et cathodes polarisées négativement. Sous l'effet de ce champ, en général assez intense, les électrons et trous sont séparés et drainés vers (respectivement) les anodes et les cathodes. Les porteurs peuvent être ensuite soit recombinés soit collectés par les électrodes.

Induction de signal

La séparation des porteurs forme alors un dipôle électrostatique qui est à son tour à l'origine d'un champ électrique inverse. Au niveau des électrodes ce champ a un effet électrique. On observe alors aux bornes du détecteur un signal de tension, courant ou charge selon les caractéristiques du circuit extérieur utilisé.

Mesure

Le signal électrique est mesuré à l'aide d'un circuit électronique préamplificateur puis on en extrait par traitement du signal diverses données :

  • la quantité de charge générées qui est représentative de l'énergie déposée,
  • la date de l'interaction,
  • la position de l'interaction (détecteur sensible à la position),
  • le type de particule ayant interagit.

Analyse

Les mesures effectuées sont ensuite traitées statistiquement. Typiquement, on génère des histogrammes dits spectres, représentatif de la distribution des particules. En particulier, le spectre en énergie est utilisé pour l'identification d'isotopes radioactifs ou de tout type de matériau par fluorescence X. Il existe des logiciels automatiser pour effectuer l'identification de pics dans les spectres énergétiques.

Structure

Détecteurs à jonction PN

La structure de base d’un détecteur à semi-conducteur est une jonction inversement polarisée.

  • Selon le dopage utilisé, le type de porteur majoritaire dans un semi-conducteur

peut être les électrons (type n) ou les trous (type p)

  • Quand deux semi-conducteurs de types différents sont juxtaposés, la diffusion thermique des porteurs et la recombinaison électrons-trous créent une zone sans porteurs de charge à l'interface, et forme ainsi une jonction (zone de déplétion). Une barrière de potentiel se forme dans cette zone, limitant la conduction entre les deux semi-conducteurs (cette zone est comparable à la zone de capacité d’une chambre à ionisation).
  • Une paire électron-trou générée par un photon interagissant dans la zone déplétée va être séparée et générer ainsi une tension V = e / Ce est la charge élémentaire et C la capacité de jonction.
  • L’application d’une polarisation inverse (Vn > Vp) élargit la zone de déplétion, ce qui augmente le volume de détection et donc l’efficacité.

Détecteurs bulk

De manière à obtenir une meilleure efficacité de détection, en particulier à haute énergie, on utilise également des structures possédant une zone non dopée (intrinsèque) volumineuse insérée entre deux contacts pouvant être des zones semiconductrices dopée (structure en diode p-i-n) ou simplement des contacts métalliques (structure métal-semiconducteur-métal, cf. jonction Schottky). En règle général, on polarise les jonctions en inverse de manière à minimiser le courant d'obscurité et donc d'optimiser le rapport signal sur bruit.

Page générée en 0.107 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise