Les différentes définitions et propriétés de la théorie des déterminants s'écrivent de façon identique dans le cadre des espaces vectoriels complexes et des matrices à coefficients complexes. Il en est de même sur tout corps commutatif, sauf pour le paragraphe « variations de la fonction déterminant » qui n'a alors pas de sens.
La quasi-totalité de la théorie des déterminants peut encore être étendue aux matrices à coefficients dans un anneau commutatif A et aux modules libres de dimension finie sur A. Le seul point de divergence est la caractérisation de l'annulation des déterminants.
Ainsi une matrice à coefficients dans un anneau commutatif A est inversible si et seulement si son déterminant est inversible dans A.
La question de l'algorithme de calcul du déterminant est à reprendre. En effet, la méthode du pivot de Gauss demande d'effectuer des divisions, ce qui n'est pas possible dans l'anneau A lui-même. Les formules de Leibniz ou de Laplace permettent de faire un calcul sans division, mais restent très coûteuses. Il existe des algorithmes bien plus raisonnables, dont le temps d'exécution est d'ordre n4 ; notamment, l'algorithme du pivot de Gauss s'adapte dans le cas d'un anneau euclidien, cette adaptation est décrite dans l'article sur le théorème des facteurs invariants. Le site de l'université libre de Berlin propose un document de référence sur la question des algorithmes sans division (en anglais).