Les étoiles Wolf-Rayet peuvent donner naissance à une multitude d'objets astrophysiques très intéressants. Cela rend leur étude d'autant plus importante. On peut distinguer principalement deux grandes catégories : les résultats de l'évolution d'une étoile simple, et ceux de l'évolution d'une étoile binaire.
Une étoile Wolf-Rayet qui explose en supernova peut donner naissance à une étoile à neutrons ou un trou noir. L'apparition de l'un ou de l'autre dépend de la quantité de matière qui n'est pas éjectée par l'explosion. Si la masse de l'objet central après l'explosion est plus grande que 1,4 masses solaire, le résultat sera une étoile à neutrons. Si elle est plus grande que 3 masses solaires, le résultat sera un trou noir. Il est aussi possible que l'explosion détruise complètement l'étoile, et que toute la matière soit éjectée dans le milieu interstellaire.
Bien que la question de savoir s'il faille une étoile binaire ou non ne soit pas encore résolue, les étoiles Wolf-Rayet sont considérées comme les progéniteurs des fameux sursauts de rayons gamma ((en) «Gamma-Ray Burst»). Le modèle le plus accepté pour l'instant est le modèle du « collapsar » (du verbe collapse, s'effondrer en anglais, à ne pas confondre avec le saut collapsar). Il décrit comment l'effondrement de l'étoile en trou noir durant la supernova créé un jet à très haute énergie, et produit des rayons gamma.
Les résultats de l'évolution d'une étoile binaire Wolf-Rayet, c'est-à-dire qu'au moins l'une des deux étoiles est une Wolf-Rayet, sont peut-être encore plus intéressants puisqu'encore plus variés. Lorsque l'étoile Wolf-Rayet explose en supernova, il y a deux possibilités pour le système binaire. Soit il se détache, soit il reste attaché. Quand le système se détache, il produit alors une étoile à neutrons ou un trou noir à haute vitesse, qui part se balader dans l'espace interstellaire. La seconde étoile part dans la direction opposée. Des études récentes ont réussi à reconstruire le parcours d'une étoile à neutrons à haute vitesse, et celui d'une étoile massive. Ils ont montré que les deux objets avaient la même origine spatiale, et qu'ils avaient été formés très certainement dans l'amas d'étoiles qui se trouvait entre les deux. Cela a été fait aussi pour un trou noir, bien que cela soit largement plus difficile d'étudier un trou noir isolé dans l'espace.
Si le système reste lié, il acquiert certainement une grande vitesse spatiale due à l'explosion. Cependant, on se retrouve avec un système à courte période contenant une étoile à neutrons ou un trou noir, avec une étoile secondaire. Si l'étoile secondaire est une étoile de faible masse (quelques masses solaires), sa matière est aspirée en direction du trou noir ou de l'étoile à neutrons. Cela crée un disque d'accrétion qui spirale autour de l'objet compact, et produit beaucoup de rayons X. Lorsque l'objet compact est une étoile à neutrons, on parle de binaire X de grande masse ((en) «High-Mass X-ray binary» ou HMXB). Lorsque l'objet compact est un trou noir, on parle d'un microquasar. Les microquasars sont l'équivalent à l'échelle stellaire des quasars dans les galaxies actives. Dans ces dernières, un tore de poussières et de gaz enveloppe un trou noir de plusieurs millions de masses solaires.
Encore plus étrange : lorsque l'étoile secondaire est une étoile relativement massive, elle évolue naturellement vers le stade d'étoile géante rouge. Son rayon croît alors de manière incroyable (plus d'un facteur 100), et peut alors absorber l'étoile à neutrons ! C'est la phase d'évolution avec une enveloppe commune. L'étoile à neutrons spirale alors à l'intérieur de l'étoile géante rouge. En fonction du gradient de densité de l'enveloppe de la géante rouge, les modèles prédisent qu'il est possible que l'étoile à neutrons reste prisonnière à l'intérieur. Le résultat serait que l'étoile à neutrons prenne la place du cœur de l'étoile ! On parle alors d'objets de Thorne-Zytkow, des noms des deux premiers qui ont théorisé l'existence de tels objets : Kip Thorne et Ana Zytkow.
Bien que d'autres modèles montrent que ce genre d'objet n'est pas stable à cause d'une perte d'énergie par neutrinos (ce qui provoquerait l'effondrement complet de l'objet en un trou noir), des programmes d'observations ont été lancés pour savoir si les objets de Thorne-Zytkow existaient bel et bien. Il a été proposé dans la littérature que les étoiles Wolf-Rayet de type WN8 soient justement des objets de Thorne-Zytkow. En effet, les WN8 sont caractérisées par le fait qu'aucune d'elle ne soit apparemment une étoile binaire, qu'elles sont souvent en dehors des amas ou des associations, qu'elles possèdent une grande vitesse spatiale, et qu'elles montrent systématiquement un très grand taux de variabilité stochastique aussi bien en photométrie qu'en polarimétrie ou en spectroscopie.
À ce jour, aucune preuve observationelle n'a permis de savoir si les objets de Thorne-Zytkow existaient, et s'il fallait les trouver parmi les étoiles Wolf-Rayet de type WN8.