Les étoiles WR éjectent beaucoup de matière, par le biais d'un vent stellaire. Celui-ci est beaucoup plus fort que le vent solaire : la perte de masse atteint en effet un taux de 10−5 masses solaires par an pour les WRs contre 10−14 pour le Soleil ; la vitesse du vent est également bien plus grande, avec environ 2000 km/s pour les WRs.
C'est dans ce vent que naissent les raies larges en émission : le spectre stellaire ne dévoile donc pas la surface de l'étoile, comme c'est le cas pour le Soleil, mais des couches externes. La perte de masse ayant amené en surface des zones enrichies en éléments lourds par les réactions nucléaires internes, le spectre est clairement enrichi en métaux. Si les raies dominantes proviennent de l'azote, on parle d'étoile WN ; pour le carbone d'étoiles WC et pour l'oxygène d'étoiles WO.
Ces étoiles WR sont assez rares : on en connaît actuellement 298 dans notre Galaxie, et une centaine dans les Nuages de Magellan.
Les Nuages de Magellan sont deux galaxies irrégulières naines au voisinage de notre propre Voie lactée. Elles ont la particularité d'avoir une métallicité moindre que celle dans le voisinage solaire (et qui sert de valeur de référence, notée
Cependant, des études ultérieures sur la quasi-totalité des 12 étoiles Wolf-Rayet du Petit Nuage de Magellan et des 134 du Grand Nuage de Magellan ont montré que seulement 30 à 40 % des étoiles étaient effectivement des binaires à courte période, comme les autres étoiles et comme dans notre propre galaxie. En d'autres termes, il fallait trouver une autre explication.
L'explication donnée aujourd'hui n'est pas encore complète, mais repose sur deux ingrédients : une vitesse de rotation plus élevée à faible métallicité, et un vent structuré (clumpy, ou "poreux").
C'est parmi les étoiles Wolf-Rayet que l'on trouve les étoiles les plus massives de l'univers. Cela peut sembler paradoxal car, s'il s'agit d'étoiles évoluées ayant perdu pas mal de masse, elles devraient avoir des masses assez faibles. Toutefois, il faut savoir qu'une étoile est classée WR uniquement sur base de l'aspect de son spectre : toute étoile présentant des raies larges en émission est donc classée WR. Parmi ces objets, des "fausses" WR viennent se glisser, des étoiles très lumineuses mais toujours sur la séquence principale - il ne s'agit donc pas d'étoiles évoluées. C'est le cas des records WR 20a, dans l'amas stellaire Westerlund 2, ainsi que NGC 3603 A1, dans l'amas NGC 3603.
Les étoiles Wolf-Rayet ont comme progéniteurs les étoiles intialement les plus massives, les étoiles O. Des étoiles moins massives ne forment pas d'étoiles Wolf-Rayet puisqu'elles ne peuvent pas atteindre le stade de la combustion de l'hélium dans le cœur. Bien que la masse initiale minimum pour former une étoile Wolf-Rayet soit connue (environ 15–25 masses solaires — cela dépend de la métallicité ambiante), on ne sait pas du tout jusqu'à quelle limite supérieure la masse initiale peut aller, s'il y en a une. Une fois que la combustion de l'hydrogène est terminée (fin de la séquence principale), la cœur se contracte, l'enveloppe se dilate et l'étoile passe par un stade intermédiaire qui peut soit être stable (RSG — supergéante rouge) soit instable (LBV). Il se peut que la combustion en couche de l'hydrogène se fasse pendant ce stade.
Ensuite, si l'étoile est suffisamment massive, la combustion de l'hélium dans le cœur démarre. Puisque cette combustion est largement plus puissante que celle de l'hydrogène, elle dégage beaucoup plus d'énergie, et est à l'origine d'un vent opaque et dense. Puisque le vent est opaque (ou optiquement épais) il n'est plus possible de distinguer la surface, et l'étoile est une Wolf-Rayet. Le vent d'une Wolf-Rayet est si fort (jusqu'à 10-5 masses solaires par an) qu'il enlève petit à petit toutes les couches supérieures (riches en hydrogène) de l'étoile. Tant que l'étoile possède encore de l'hydrogène dans le vent, elle apparaît comme une WNL. Une fois que l'hydrogène a disparu, elle devient une WNE.
Les produits de la combustion de l'hélium sont principalement le carbone et l'oxygène. Puisque les couches supérieures de l'étoile disparaissent, le carbone devient visible, et l'étoile devient une WC. Une fois que la combustion de l'hélium dans le cœur est terminée, c'est la combustion du carbone qui commence, dont le produit est principalement l'oxygène. Puis il s'ensuit la combustion de l'oxygène en silicium, et ainsi de suite, jusqu'au fer. Une fois le cœur de fer atteint, l'étoile explose en supernova.