On s'intéresse au spectre de la vitesse juste au-dessus et au-dessous du niveau énergétique de la séparatrice. Sur cette séparatrice, le spectre est qualifié de mode soliton.
Dans le cas de la séparatrice , l'équation du premier ordre s'écrit :
La solution "soliton" est caractérisée par les équations suivantes :
Si l'énergie du pendule est très légèrement inférieure à 2gH, la différence avec le mode soliton est infime. La valeur de la vitesse est imperceptiblement la même et le mouvement est donc quasi-identique, SAUF pour les moments où elle va s'annuler. La période est finie est vaut :
De même, si l'énergie est très légèrement supérieure à 2gH, le mouvement est quasi-identique (mode soliton), SAUF que la vitesse ne s'annule jamais et que l'élongation devient fonction monotone en quasi-escalier de marches de hauteur 2π en forme de sigmoïdes (des "kinks" en anglais), longues d'une période très grande mais finie :
On trouve donc que
On caractérise le taux d'anharmonicité par l'étendue du spectre (discret puisque la fonction est périodique). A la limite :
Or, le spectre d'un peigne de Dirac est un peigne de Dirac (théorème de Poisson)
Le pendule simple est l'exemple le plus élémentaire qui montre :
Expérimentalement, on lance un pendule de Mach en tournoiement : les frottements faibles feront transiter d'un mode à l'autre. La projection de la boule sur l'axe portant
Le développement en série de Fourier des fonctions de Jacobi sn, cn et dn sont connues. On en déduit un développement en série de Fourier de la vitesse angulaire.
Cas k > 1 : soit N = T/To, avec T la période pour effectuer deux tours, correspondant à une rotation de 4π. N vaut
Ci-dessous, les spectres de fréquence, par valeurs décroissantes de k, depuis une grande valeur jusqu'à une valeur légèrement supérieure à 1. En abscisse, on a porté les indices pairs 2n et en ordonnées les valeurs de a2n (on a pris a0 = 2) :
Grande valeur de k | Valeur intermédiaire | Valeur légèrement supérieure à 1 |
Cas k < 1 : la valeur de N est cette fois
Ci-dessous, les spectres de fréquence, par valeurs décroissantes de k, depuis une valeur légèrement inférieure à 1 jusqu'à une valeur très petite. En abscisse, on a porté les indices impairs 2n+1 et en ordonnées les valeurs de a2n+1 :
Valeur légèrement inférieure à 1 | Valeur intermédiaire | Très petite valeur de k |
Voici également la représentation graphique de