Un système cristallin est un classement des cristaux sur la base de leurs caractéristiques de symétrie, sachant que la priorité donnée à certains critères plutôt qu'à d'autres aboutit à différents systèmes.
La symétrie de la maille conventionnelle permet de classer les cristaux en différentes familles cristallines : quatre dans l'espace bidimensionnel, six dans l'espace tridimensionnel.
Une classification plus fine regroupe les cristaux en différents systèmes. Il existe deux types de systèmes, selon que le critère de classification est la symétrie du réseau ou la symétrie morphologique. Historiquement, ces deux systèmes ont été indistinctement appelés système cristallin, ce qui a été à l'origine de la confusion dans la littérature surtout minéralogique.
Lorsqu'on classe les cristaux sur la base de la symétrie de leur réseau, on obtient un ensemble de quatre (espace bidimensionnel) ou sept (espace tridimensionnel) systèmes qui, dans l'ancienne littérature minéralogique francophone, (voir surtout les ouvrages de Georges Friedel) étaient appelés systèmes cristallins. Le terme officiel choisi par l'Union internationale de cristallographie est systèmes réticulaires (lattice systems en anglais).
Un système réticulaire regroupe tout cristal ayant en commun le groupe ponctuel du réseau. Les tableaux suivants résument les systèmes réticulaires.
symétrie du réseau | système réticulaire |
---|---|
2 | monoclinique |
2mm | orthorhombique |
4mm | tétragonal (quadratique) |
6mm | hexagonal |
symétrie du réseau | système réticulaire |
---|---|
1 | triclinique |
2/m | monoclinique |
mmm | orthorhombique |
4/mmm | tétragonal (quadratique) |
3m | rhomboédrique |
6/mmm | hexagonal |
m3m | cubique |
La classification des cristaux sur la base de leur symétrie morphologique, ainsi que de la symétrie de leurs propriétés physiques, fut introduite par les cristallographes allemands sous le nom de système cristallin, qui a été retenu comme nom officiel par l'Union internationale de cristallographie.
Un système cristallin regroupe tout cristal caractérisé par la présence d'éléments de symétrie minimaux, auxquels peuvent éventuellement s'en ajouter d'autres jusqu'à obtenir la symétrie d'un réseau. Un cristal qui possède la pleine symétrie de son réseau est dit holoèdre ; un cristal dont la symétrie est inférieure à celle de son réseau est dit mérièdre. Les tableaux suivants résument les systèmes cristallins, où « An » signifie un point (en deux dimensions) ou un axe (en trois dimensions) de rotation de 2π/n et « m » indique une ligne (en deux dimensions) ou plan (en trois dimensions) de réflexion (miroir).
Élements de symétrie minimaux définissant le système cristallin | système cristallin |
---|---|
1xA2 | monoclinique |
1xA2 et 2xm | orthorhombique |
1xA4 | tétragonal (quadratique) |
1xA6 | hexagonal |
Élements de symétrie minimaux définissant le système cristallin | système cristallin |
---|---|
1xA1 | triclinique (anortique) |
1xA2 ou 1xm | monoclinique |
3xA2 ou 2xm + 1xA2 à leur intersection | orthorhombique |
1xA4 | tétragonal (quadratique) |
1xA3 | trigonal |
1xA6 | hexagonal |
4xA3 + 3xA2 | cubique |