Théorie cinétique des gaz - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Vitesse et pression

Statistiques sur les vitesses

Considérons une molécule ayant une vitesse de norme v et frappant une surface. Elle subit un choc élastique, c'est-à-dire qu'elle repart en faisant un même angle avec la surface, avec une vitesse de même norme v. Si l'on choisit un repère orthonormé e, e, e, avec e perpendiculaire à la surface, alors cette vitesse se décompose selon les trois axes

\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3

On appelle c(v) d3v le nombre de molécules par unité de volume (la concentration) dont la vitesse est comprise dans un volume infinitésimal d3v autour de la valeur v. La concentration globale est donc :

C = \iiint c(\mathbf{v})\, d^3\mathbf{v} = \frac{n}{V}

La répartition statistique des vitesses étant isotrope, la moyenne des composantes de la vitesse est évidemment nulle :

\langle v_1\rangle = \langle v_2\rangle = \langle v_3\rangle = 0

Les moyennes quadratiques ne sont par contre pas nulles,et elles sont égales entre elles par symétrie de rotation. Comme on a toujours

v_1^2 + v_2^2 + v_3^2 = v^2

(théorème de Pythagore), on a en moyenne

\langle v_1^2\rangle = \langle v_2^2\rangle = \langle v_3^2\rangle = \frac{1}{3}\langle v^2\rangle

avec

\langle v_i^2\rangle = \frac{1}{C} \iiint c(\mathbf{v}) \, v_i^2 \, d^3\mathbf{v}

et

\langle v^2\rangle = \frac{1}{C} \iiint c(\mathbf{v}) \, v^2 \, d^3\mathbf{v}

Impact d'une molécule

Lorsqu'une molécule rebondit de manière élastique sur la surface, la composante perpendiculaire à la surface de sa quantité de mouvement varie de

2\,m\,v_1

m étant la masse de la molécule. D'après les lois de Newton (principe fondamental de la dynamique et théorème des actions réciproques), l'intégrale en temps de la force qu'elle imprime sur la surface est donc

\int f_1 dt = 2 \,m \, v_1 .

Impact de toutes les molécules

On cherche maintenant, v étant fixé à d3v près, à savoir combien de molécules frappent une petite surface d'aire S durant une durée τ.

Les molécules frappant la surface entre l'instant 0 et l'instant τ sont nécessairement dans un cylindre de base S et de hauteur vτ — les autres molécules sont trop loin ou frappent à côté. Ce cylindre d'axe v a un volume de S v τ. La force d3F créée par toutes les molécules considérées est donc :

\int_0^\tau d^3F\, dt = 2 \,m \, v_1 \ S \, v_1 \, \tau \ c(\mathbf{v}) \, d^3\mathbf{v} .

La force F créée par toutes les molécules s'obtient en intégrant sur v > 0 si l'on oriente e du gaz vers l'extérieur (on ne considère que les molécules allant vers la surface, pas celles s'en éloignant). Ceci revient à diviser par deux, en raison de la symétrie de la distribution c(v) :

\int_0^\tau F dt = 2 \, m \,S \iiint_{v1>0} v_1^2 \, \tau\,c(\mathbf{v}) \, d^3\mathbf{v} = m \, \tau\,S \iiint v_1^2 \, c(\mathbf{v}) \, d^3\mathbf{v}

En négligeant les fluctuations dans le temps de F, on peut intégrer sur t et simplifier par τ :

F = m \, S \iiint v_1^2 \, c(\mathbf{v})\, d^3\mathbf{v} = m\, S\, C \langle v_1^2\rangle

ou

F = \frac{1}{3} m\, S\, C \,\langle v^2\rangle

La pression étant la force divisée par la surface, on obtient

p = \frac{1}{3} m \, C \langle v^2\rangle

ou encore, par définition de C = n / V :

p \, V = \frac{1}{3} m \, n \,\langle v^2\rangle
Page générée en 0.093 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise