Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure sur la population.
Un cas commun d'un échantillon biaisé est l'éclairage fallacieux. Cette erreur repose sur l'attention portée par les médias, ou d'autres institutions, sur un groupe particulier d'individus, ce qui donne de facto l'illusion (volontaire ou non) que ce groupe représente la population. Or, les médias sont plutôt sensibles à l'exceptionnel (en bien ou en mal) qu'à l'ordinaire.
Les campagnes d'appels téléphoniques entrants sont particulièrement sensibles à cette erreur. Ce genre de campagnes consiste à demander aux gens d'appeler eux-mêmes sur une question particulière. Les personnes qui répondent se sont alors autosélectionnées. Au mieux, cela signifie que seuls ont répondu les gens qui prêtent attention à ce sujet et, au pire, il est possible que certaines organisations tentent de faire du bourrage d'urne en demandant à leur adhérents d'appeler sans cesse.
L'échantillon biaisé n'est pas toujours destiné à tromper : en 1936, dans les premières tentatives de sondages, le magazine américain Literary Digest a appelé deux millions de numéro de téléphone au hasard en questionnant les gens sur le résultat des élections. La prédiction fut incorrecte car, à cette époque, les possesseurs de téléphone n'étaient pas représentatifs de l'électorat, car réservés à une certaine partie de la population. En revanche, un échantillon de seulement 50 000 personnes sélectionnées par l'institut George Gallup a correctement prédit le résultat, accroissant ainsi la popularité de la méthode Gallup.