L'allélopathie explique en partie le caractère invasif de certaines espèces. Les invasions biologiques sont considérées par l'UICN comme la seconde cause de dégradation des écosystèmes et de régression de la biodiversité. A titre d'exemple, l'Ailanthus altissima (Faux-vernis du Japon) interagit en Amérique du Nord avec trois espèces autochtones (Acer rubrum, Acer saccharum, Quercus rubra). Acer rubrum montre une réponse positive à la présence de l'envahisseur alors que les jeunes Q. rubra ont une croissance inhibée en sa présence. Une espèce invasive peut donc fortement modifier le peuplement dans lequel est apparait, en inhibant le développement de certaines espèces, et en en favorisant d'autres. Acer rubrum s'est fortement développé aux USA au XXème siècle, peut-être en partie à cause de l’Ailanthus altissima.
Les métabolites secondaires sont les outils principaux de la coévolution plantes-êtres vivants, ce qui a donné lieu a une diversification de ces composés. Il s'agit d'une coévolution qui s'applique à tous les niveaux d'organisation du vivant, des Bactéries aux Champignons, des Insectes aux Mammifères, qui s'exprime à tous les stades du développement de la plante. Deux axes de coévolution ont été privilégiés:
A cause de leur immobilité, les plantes doivent utiliser des défenses physiques et chimiques dont les métabolites toxiques pour survivre aux attaques d'insectes, de bactéries et de champignons et pour participer à la compétition pour la lumière et les ressources avec les autres plantes. Les composés allélopathiques de défense contre les prédateurs peuvent être insecticides, des anti-fongiques, des anti-pathogènes (les phytoalexines). Il existe deux types de défenses :
La toxicité d'une molécule est toujours relative et une molécule toxique ou repoussante pour certaines espèces peut être attractive pour d'autres, qui ont contourné ou détourné à leur profit les voies de toxicité.
La synthèse et l'utilisation effective des substances chimiques de défense est un compromis permanent entre coût et bénéfice pour le végétal. Ces mécanismes sont à mettre en relation avec le coût énergétique de la synthèse des molécules de défense.
Il s’agit ici de la version stricte de l’allélopathie : excrétion ou exudation par les plantes de substances inhibitrices qui réduisent ou empêchent la croissance d’autres plantes dans le voisinage.
On considère l'allélopathie comme une stratégie active de compétition, car elle joue sur la capacité des individus à diminuer les performances d'autres individus. La fonction de relation des végétaux repose sur l'extraordinaire spécificité de leurs métabolites secondaires.
C'est pourquoi l'inhibition peut être spécifique et, dans certains cas, sur les individus de la même espèce plus que les autres.
On peut considérer qu’il ne s’agit pas ici de réellement entrer en compétition mais de prévenir une croissance excessive dans un environnement hostile (désert) sous des conditions temporairement favorables car les ressources sont fonction du nombre d'individus de la même espèce présents sur le territoire hostile. En limitant leur croissance, ces individus peuvent ainsi subvenir à leur développement tout en préservant leur capacité à être compétitifs, à s'adapter à leur milieu. Par exemple, si les arbustes du désert répondaient immédiatement à une forte pluie par une croissance rapide, ils pourraient outrepasser leur capacité à survivre à une période de sécheresse, à laquelle ils sont préparés par un faible développement de leur organisme.
La compétition entre diverses espèces est la compétition interspécifique. Elle s'instaure pour l'appropriation d'une ressource présente en quantité limitée dans l'environnement. Il peut s'agir d'une ressource nutritive (lumière, eau, sels minéraux), ou d'une appropriation de l'espace. Les végétaux étant immobiles, ils bénéficient de vastes surfaces d'échanges avec l'environnement souterrain et aérien pour parvenir à leurs besoins d'organismes autotrophes fixés. Plus sa surface d'échanges est grande, plus le végétal collecte des signaux lui permettant de moduler son développement vers une exploitation efficace des ressources de son milieu.
Le végétal soumis à la compétition protège et défend ses surfaces d'échanges grâce à des métabolites secondaires.
La plupart des individus en compétition sont donc sujet à une inhibition tandis que la production totale de biomasse tend vers un maximum. On parle de plantes cibles qui captent les composés toxiques.
Les facteurs produits par le système racinaire jouent ici un rôle important, avec une faible contribution des feuilles.
Les genres Artemisia et Eucalyptus émettent du 1,8cineole, un puissant agent allélochimique qui inhibe la croissance de plusieurs herbes.
Une plante peut émettre plusieurs composés allélopathiques différents. Une substance allélopathique est plus ou moins spécifique vis-à-vis des organismes cibles, elle peut agir sur plusieurs espèces, plus ou moins éloignées phylogénétiquement.
L’arbre Ailanthus altissima émet de l’ailanthone, inhibiteur de croissance de Brassica juncea, Eragrostis tef, Lemna minor et Lepidium sativum. Les extraits de cet arbre, qui contiennent également comme composés actifs les quassinoïdes (triterpènes dégradés), l’amarolide, l’acétyl amarolide et la 2-dihydroxyailanthone, ont aussi un effet inhibiteur sur la croissance des insectes Pieris sp, Platyedra sp et les pucerons.
Les effets de ces substances volatiles libérées dans le sol et dans l'air sont nombreux : on peut citer l'inhibition de la mitose au niveau des méristèmes racinaires, la diminution de l'ouverture des stomates , l'inhibition de certaines enzymes, de la synthèse protéique. Les racines exudent une grande variété de molécules de faible poids moléculaire dans la rhizosphère. La rhizosphère est un lieu important d’interaction entre racines, pathogènes, microbes bénéfiques et invertébrés.
L’allélopathie concerne aussi le monde aquatique, chez les angiospermes, les épiphytes et le phytoplancton.
L’angiosperme d’eau douce Myriophyllum spicatum (Haloragaceae) émet des polyphénols algicides et cyanobactéricides (acide élagique, catéchine…), dont le plus actif est la tellimagrandine II, qui inhibe la photosynthèse des cyanobactéries et d’autres phototrophes et inactive les enzymes extracellulaires de ces organismes par complexation.
Les cyanobactéries Scytonema hofmannii (par le biais de la cyanobactérine) et Fischerella muscicola (via la fischerelline A) agissent de la même manière sur la photosynthèse.
L’interaction allélochimique est aussi importante pour la compétition dans le zooplancton, par exemple, la population du copépode Diaptomus tyrreli est réduite en présence de substances émises par le copépode Epischura nevadensis.
Les végétaux sont autotrophes. Cependant certains sont incapables de se nourrir seuls et vivent en parasites. Le parasitisme est défini comme une relation interspécifique durable où l'un des partenaires, le parasite, vit aux dépens du second, l'hôte, qui se trouve lésé par cette association. L'hôte représente ainsi le milieu de vie du parasite. La mise en place de la relation parasitaire constitue une étape cruciale dans le cycle de vie du parasite et dépend de la rencontre des deux partenaires. Un des exemples les plus connus est celui du gui, mais il y a de nombreux parasites (3000 à 5000 espèces) qui sont classés selon le terme hémiparasite ou holoparasites, selon leur capacité à effectuer la photosynthèse.
Lors de la sortie de la dormance des graines de l’hémiparasite Striga asiatica, un haustorium se développe en formant une structure racinaire massive pluricellulaire spécialisée qui envahit les racines hôtes et sert de conduit physiologique entre le parasite et l’hôte pour absorber les ressources de la plante. Le passage de la vie autotrophe à la vie hétérotrophe par le développement des haustoria chez les hémiparasites de la famille des Scrophulariaceae est déclenché par l’application aux racines du parasite de facteurs racinaires de la plante hôte. Plusieurs quinones et phénols provoquent ce phénomène en jouant sur les potentiels osmotiques de la plante hôte. Cela va modifier sa structure et donner un signal au parasite de lancer la morphogénèse de l'haustorium.
Le principal composé est la 2,6-dimethoxybenzoquinone (DMBQ). Elle est relâchée dans la rhizosphère dans les exudats racinaires ou issue de l’oxydation des acides phénoliques, composant majoritaire de ces exudats.
Les racines exercent une influence sélective sur les communautés bactériennes qui est en partie spécifique de la plante.
Les plantes peuvent augmenter la disparition des contaminants des sols en stimulant l’activité microbienne de dégradation.
De nombreuses plantes, dans des environnements différents et en réponse à différents polluants, enrichissent les populations de bactéries endophytiques et de la motte racinaire en génotypes cataboliques. L’enrichissement est dépendant de la nature et de la quantité de contaminants mais aussi des espèces de plantes. Ces bactéries protègent vraisemblablement les plantes des effets toxiques des polluants.
Les composés allélopathiques peuvent donc jouer un rôle dans la phytoremédiation grâce a leur activité importante dans les signaux d'information entre la bactérie et la plante.
Les relations des végétaux avec les micro-organismes ne sont pas toujours conflictuelles. Certaines sont des symbiotes tout aussi complexes que les relations entre agents pathogènes et la plante et aux conséquences tout aussi importantes pour l'agriculture.
Il existe des ressemblances de structure et de fonction entre le parasitisme et la symbiose. Certains parasites peuvent devenir symbiotes et inversement selon l'environnement, l'état physiologique du végétal et la variabilité génétique des protagonistes.
Parmi la majorité des végétaux qui ont des relations symbiotiques on distingue plusieurs symbiotes:
Associations d'un champignon en et d'une racine, les mycorhizes sont la symbiose la plus répandue sur terre. Outre leur rôle dans la nutrition du végétal elles contribuent à protéger les racines contre une infection par des micro-organismes pathogènes du sol.
Associations d'une bactérie ou d'une cyanobactérie et généralement d'une racine, elles sont plus spécifiques de certaines familles des végétaux.
Les métabolites jouent un rôle très important dans le processus de reconnaissance entre symbiotes et hôtes. Car celui- ci implique un dialogue chimique entre les protagonistes via des signaux moléculaires qui sont des flavonoïdes.
Le cas des nodosités est le plus connu: le végétal produit des flavonoïdes qui attirent les bactéries et stimulent leur production de facteurs de nodulation. Le végétal perçoit chimiquement ces facteurs NOD par des récepteurs et produit en retour plus de flavonoïdes et initie la nodosité.
Pour les mycorhizes les processus sont les mêmes sauf que la relation entre le champignon et son hôte est peu spécifique. La voie de signalisation des endosymbioses est donc commune pratiquement commune aux deux champignon et la bactérie.
Certains composés des exudats racinaires peuvent servir de substrat naturel à l’induction des gènes bactériens de catabolisme des polluants des sols. La l-carvone de Mentha spicata et d’autres terpénoïdes sont d’importants inducteurs du cométabolisme des PCB (biphénols polychlorés, polluant) chez Arthrobacter sp.
On observe un enrichissement en phénotypes ntd Aa (2-nitrotoluène réductase) en cas de pollution par des nitro-aromatiques et un enrichissement en phénotypes alk B (alkane monooxygénase) et ndo B (naphtalène dioxygénase) pour une pollution aux hydrocarbures. L’enrichissement en phénotype alk B se produit dans l’intérieur de la racine (bactéries endophytiques) tandis que l’enrichissement en ndo B se produit dans la motte. Scirpus pungens exposée au pétrole enrichit le sol en génotypes ndo B tandis que la plupart des plantes l’enrichissent en alk B. Les bactéries endophytiques augmentent la capacité des plantes à résister aux pathogènes, herbivores et autres plantes.