Axiomes de Peano - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Cohérence

En vertu du second théorème d'incomplétude de Gödel, la non-contradiction de ces axiomes entre eux n'est pas conséquence de ces seuls axiomes : on ne peut pas prouver la cohérence de l'arithmétique dans l'arithmétique.

Une structure de Dedekind-Peano est un modèle de ces axiomes. La construction ci-dessus fournit donc une preuve de cohérence des axiomes relativement à une théorie dans laquelle on peut définir ces structures, et formaliser la preuve de correction, par exemple la théorie des ensembles de Ernst Zermelo. Il existe également des preuves de cohérence relative, notamment celle de Gerhard Gentzen qui fournit une mesure précise de la « force » de l'arithmétique : il suffit d'ajouter un principe d'induction jusqu'à l'ordinal dénombrable ε0 pour pouvoir démontrer la cohérence de l'arithmétique.

Opérations et ordre

L'addition et la multiplication sont définies sur \mathbf{N} par les axiomes de Peano.

L'addition sur \mathbf{N} est définie récursivement en posant a + 0 = a et a + s(b) = s(a + b) pour tout a et b. \left(\mathbf{N},+\right) est ainsi un monoïde commutatif d'élément neutre 0. Ce monoïde peut être plongé dans un groupe. Le plus petit groupe le contenant est celui des nombres entiers.

Puisque s(0) = 1, s(b) = s(b + 0) = b + s(0) = b + 1. Le successeur de b est simplement b + 1.

De façon analogue, en supposant que l'addition a été définie, la multiplication sur \mathbf{N} est définie en posant a\cdot 0=0 et a\cdot (b+1)=(a\cdot b)+a . est ainsi un monoïde commutatif d'élément neutre 1.

Il est finalement possible de définir un ordre total sur \mathbf{N} en posant que a \le b s'il existe un nombre c tel que a + c = b. Alors \mathbf{N} muni de cet ordre est un ensemble bien ordonné : tout ensemble non vide de nombres naturels possède un plus petit élément.

Modèles non standard

Un modèle de l'arithmétique de Peano qui n'est pas une structure de Dedekind-Peano, et n'est donc pas isomorphe à \mathbf{N} est dit « non standard ».

Tout modèle non standard de l'arithmétique contient les entiers naturels, que l'on appelle alors, entiers « standard », et qui sont les éléments du modèle que l'on peut désigner par des termes du langage, les autres éléments du modèle sont alors appelés entiers non standard.

Plus précisément si \mathbf{N'}\, est un modèle non standard de l'arithmétique, alors il existe une injection f de \mathbf{N} dans \mathbf{N'}\, telle que :

  • f(0) = 0\quad
  • \forall n, f(s(n)) = s(f(n))

et l'image de f est ce que l'on appelle l'ensemble des entiers standard du modèle.

Il n'est pas possible de distinguer les entiers standard des entiers non standard dans le langage de l'arithmétique, puisque si un prédicat permettait de caractériser les entiers standard, le schéma de récurrence particularisé à ce prédicat ne serait pas valide. On « sort » donc de l'arithmétique de Peano dès que l'on raisonne sur ces notions dans un modèle non standard. Mais, on peut se servir du fait que les axiomes de Peano restent valides dans ce modèle. On montre par exemple facilement qu'un entier non standard est nécessairement supérieur à un entier standard. La totalité de l'ordre (défini par l'addition, voir ci-dessus), reste valide. Si un entier non standard était plus petit qu'un entier standard, on montrerait par injectivité du successeur et récurrence qu'il existe un entier non standard plus petit que 0, et 0 serait un successeur. Encore plus simplement, on montre qu'il ne peut y avoir de plus petit entier non standard, puisque tout entier non nul est un successeur.

Existence des modèles non standard

  • Le théorème de compacité et le théorème de Löwenheim-Skolem assurent qu'il existe des modèles dénombrables non standard de l'arithmétique de Peano qui satisfont exactement les mêmes énoncés du premier ordre que \mathbf{N}\, . Abraham Robinson fonde l'analyse non standard sur un modèle de l'arithmétique satisfaisant en particulier cette condition.
  • Il existe également des modèles non standard qui satisfont des énoncés du premier ordre faux dans \mathbf{N}\, (en plus, rappelons-le, de tous les énoncés démontrables dans Peano, par définition de la notion de modèle). Un énoncé vrai dans \mathbf{N}\, n'est pas démontrable dans l'arithmétique de Peano, si et seulement s'il existe un modèle non standard dans lequel cet énoncé est faux. Les théorèmes d'incomplétude de Gödel ont donc pour conséquence l'existence de tels modèles (par exemple, il existe des modèles qui satisfont un énoncé exprimant que l'arithmétique de Peano est incohérente !). A contrario, on peut utiliser de tels modèles pour montrer que certains énoncés ne sont pas démontrables dans l'arithmétique de Peano (voir par exemple le Théorème de Goodstein).
Page générée en 0.095 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise