Galaxie active - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Caractéristiques observationnelles

Il n'y a pas de signature observationnelle unique pour les NAG. La liste ci-dessous regroupe certains éléments importants qui ont permis l'identification de systèmes comme étant des NAG.

  • Les émissions nucléaires optiques continues sont visibles chaque fois que nous avons une vue directe sur le disque d'accrétion. Les jets peuvent aussi contribuer à ce composant des émissions d'un NAG.
  • Les émissions nucléaires d'infrarouges sont visibles chaque fois que le disque d'accrétion et la matière environnant sont obscurcies par du gaz et de la poussière qui ré-émettent le rayonnement du noyau sous forme d'infrarouge. Étant des émissions thermiques, elles peuvent être distinguées des jets.
  • Les raies d’émissions optiques larges proviennent de matériaux froids proches du trou noir central. Ces raies sont larges parce que les matériaux qui les émettent se déplacent à grande vitesse.
  • Les raies d’émissions optiques étroites proviennent aussi de matériaux froids, mais ceux-ci étant plus éloignés du noyau, ils émettent des raies plus fines.
  • Les émissions continues d'ondes radio sont toujours dues à un jet. Elles montrent un spectre caractéristiques des synchrotrons.
  • Les émissions continues de rayons X peuvent provenir à la fois d'un jet et de la couronne chaude du disque d'accrétion via des processus de séparations : dans les deux cas, on peut observer un spectre de faible puissance. Dans certains NAG radio-silencieux (voir plus bas), il y a un petit sursaut de rayons X et plus des faibles émissions. L'origine de ces petits sursauts n'a pas encore été tout à fait résolue pour le moment.
  • Les raies d’émissions de rayons X sont le résultat de l'illumination de matériaux lourds et froids par un flux de rayons X continu. La fluorescence donne lieu à des raies d'émission variées, la plus connue étant celle du fer à environ 6,4 keV. Ces raies peuvent être étroites ou larges.

Utilisations en cosmologie et évolution

Durant longtemps, les galaxies actives détenaient le record du plus grand redshift, du fait de leur forte luminosité (aussi bien en optique qu'en ondes radio) : elles ont toujours un rôle à jouer dans l'étude des débuts de l'univers. Néanmoins, on sait à présent que les NAG donnent, par nature, une image très biaisée de la galaxie à haut redshift « typique ».

L'étude de l'évolution des populations de NAG est plus intéressante. La plupart des classes de NAG lumineux (radio-silencieux et radio-bruyants) semblent avoir été beaucoup plus nombreux dans l'univers jeune. Cela suggère que les trous noirs massifs se sont formés relativement tôt et que les conditions pour la formations de NAG lumineux étaient plus facilement disponibles aux débuts de l'univers — par exemple, il y avait beaucoup plus de gaz froid au centre des galaxies qu'il n'y en a maintenant. Cela implique aussi qu'un grand nombre d'objets qui ont été des quasars lumineux le sont beaucoup moins voir quasi-sombres. L'évolution des population de NAG peu lumineuse est bien moins limitée à cause de la difficulté de détecter et d'observer ces objets à de hauts redshifts.

Unification

Les modèles unifiés des NAG regroupent 2 classes d'objets ou plus, basés sur les classifications observationnelles traditionnelles, en proposant qu'il y a bien un type unique d'objet physique observé sous différentes conditions. Les modèles unifiés les plus favorisés à ce jour sont les « modèles basés sur l'orientation ». Ceux-ci proposent que les différences apparentes entre différents types d'objets sont simplement dues à des orientations différentes par rapport à l'observateur.

Unification des objets radio-silencieux

À de faibles luminosités, les objets à être unifiés sont les galaxies de Seyfert. Les modèles unifiés proposent que les Seyfert 1 sont observées avec une vue direct sur le noyau actif ; alors que nous voyons le noyau des Seyfert 2 à travers des structures obscurcissantes, ce qui modifie les raies d'émissions que nous observons sur Terre. L'idée de base des modèles d'accrétion dépendant de l'orientation est que deux objets, appartenant apparemment à des catégories distinctes, peuvent appartenir à la même s'ils sont observés selon des lignes de mire différentes. L'image standard consiste en un tore de matière opaque encerclant le disque d'accrétion. Il doit être suffisamment épais par cacher les raies larges, mais suffisamment fin pour laisser passer les raies étroites, qui sont observées dans les deux classes d'objets. Les Seyfert 2 sont vues à travers ce tore. À l'extérieur de ce tore se trouvent des matériaux capable de dévier une partie des émissions nucléaires vers notre ligne de mire, ce qui nous permet d'observer certaines émissions de rayons X et de lumière visible, et dans certaines cas, des raies d'émissions larges — celles-ci sont alors fortement polarisées, montrant qu'elles ont été déviées et prouvant que certaines Seyfert 2 « contiennent » réellement une Seyfert 1 cachée. Des observations en infrarouge appuient cette théorie.

À de plus fortes luminosités, les quasars prennent la place des Seyfert 1, mais les « quasars 2 » correspondant sont hypothétiques à ce jour. S'ils n'ont pas le composant déviant des Seyfert 2, ils seront difficiles à détecter, mis à part leur raies fines et leur puissant rayonnement X.

Unification des objets radio-bruyants

Historiquement, le travail sur l'unification des objets radio-bruyants s'est concentré sur les quasars radio-bruyants très lumineux. Ceux-ci peuvent être mis en commun de par leur raies d'émissions étroites d'une manière analogue à l'unification des Seyfert 1 et 2 (mais sans la complication du composant réflecteur : les radiogalaxies émettant des raies étroites ne montrent pas d'émissions nucléaires continues ou un quelconque flux de rayon X réfléchi, bien qu'elles émettent occasionnellement des raies larges polarisées). Les structures radio à grande échelle de ces objets ont apporté la preuve que les modèles d'unifications basés sur l'orientation sont bien vrais. Lorsqu'elles sont disponibles, les preuves fournies par les observations en rayons X soutiennent la thèse d'unification : les radio galaxies montrent des preuves d'obscuration par un tore de matière alors que les quasars pas. Cependant, il faut prêter attention au fait que les objets radio-bruyants ont également un composant relatif au petits jets, il est par conséquent nécessaire de recourir à la haute résolution afin de séparer les émissions thermiques des gaz chauds à grande échelle. À de petits angles de la ligne de visée, les jets dominent l'image et nous pouvons voir certaines variétés de blazar.

Cependant, la majorité des radiogalaxies sont des objets peu lumineux et peu excités. Celles-ci ne présentent pas de fortes raies d'émissions optiques d'origine nucléaire — qu'elles soient étroites ou larges —, ont une raie continue dans l'optique, qui se trouve être entièrement relative au jet, et leur émissions en rayons X proviennent également du jet seul. Ces objets ne peuvent être unifiés avec les quasars, bien qu'ils comprennent des objets très lumineux dans le domaine radio, puisque le tore ne pourra jamais masquer la région de raies étroites à la mesure requise et aussi parce que les études en infrarouge démontrent qu'ils n'ont pas de composant nucléaire caché. En fait, il n'y a absolument aucune preuve de l'existence d'un tore dans ces objets. Ils forment donc très probablement une classe à part dans laquelle seules les émissions relatives au jets comptent. À de petits angles de la ligne de mire, ils apparaîtront comme des objets BL Lac.

Page générée en 0.136 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise