Loi de Fisher - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Fisher-Snedecor

F distributionPDF.png

F distributionCDF.png

Paramètres d_1>0,\ d_2>0 degré de liberté
Support x \in [0, +\infty[\!
Densité de probabilité (fonction de masse) \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!
Fonction de répartition I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!
Espérance \frac{d_2}{d_2-2}\! pour d2 > 2
Mode \frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\! pour d1 > 2
Variance \frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\! pour d2 > 4
Asymétrie (statistique) \frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!
pour d2 > 6
Kurtosis
(non-normalisé)
voir texte


Dans la Théorie des probabilités et en Statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George W. Snedecor. La loi de Fisher survient très fréquemment en tant que distribution de l'hypothèse nulle dans des tests statistiques, comme par exemple les tests du ratio de vraisemblance ou encore dans l'analyse de la variance (F-test).

Caractérisation

Une variable aléatoire réelle distribuée selon la loi de Fisher peut être définie comme le quotient de deux variables aléatoires indépendantes, distribuées selon une loi du χ²:

\frac{U_1/d_1}{U_2/d_2}

avec U1 et U2 ayant respectivement d1 et d2 degrés de liberté.

La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par

f(x) = \frac{\left(\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_1/2} \; \left(1-\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_2/2}}{x\; \mathrm{B}(d_1/2, d_2/2)}

pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.

La fonction de répartition associée est F(x)=I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)

I est la fonction bêta incomplète régularisée.

L'espérance, la variance valent respectivement

\frac{d_2}{d_2-2}\!

pour d2 > 2 et

\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!

pour d2 > 4. Pour d2 > 8, le kurtosis est

\frac{20d_2-8d_2^2+d_2^3+44d_1-32d_1d_2+A}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)/12}

A=5d_2^2d_1-22d_1^2+5d_2d_1^2-16.

Distributions associées et propriétés

  • Si \ X \sim \mathrm{F}(\nu_1, \nu_2) alors Y = \lim_{\nu_2 \to \infty} \nu_1 X est distribuée selon une loi du χ² \chi^2_{\nu_{1}} ;
  • La loi F(ν12) est équivalente à la loi T-square de Hotelling's (\nu_1(\nu_1+\nu_2-1)/\nu_2)\operatorname{T}^2(\nu_1,\nu_1+\nu_2-1) ;
  • Si X \sim \operatorname{F}(\nu_1,\nu_2), alors  \frac{1}{X} \sim F(\nu_2,\nu_1) ;
  • Si X \sim \mathrm{t}(\nu)\! est distribuée selon une loi de Student alors X^2 \sim \operatorname{F}(1, \nu) ;
  • Si X \sim \operatorname{F}(\nu_1,\nu_2) et Y=\frac{\nu_1 X/\nu_2}{1+\nu_1 X/\nu_2} alors Y \sim \operatorname{Beta}(\nu_1/2,\nu_2/2) est distribuée selon une loi bêta;
  • Si \operatorname{Q}_X(p) est le quantile d'ordre p pour X\sim \operatorname{F}(\nu_1,\nu_2) et que \operatorname{Q}_Y(p) est le quantile d'ordre p pour Y\sim \operatorname{F}(\nu_2,\nu_1) alors \operatorname{Q}_X(p)=1/\operatorname{Q}_Y(p) .

Généralisation

Une généralisation de la loi de Fisher est la loi de Fisher non centrée.

Page générée en 0.162 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise