Magnétosphère de Jupiter - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Émissions

Aurores

Image de l'aurore nord de Jupiter, montrant la principale aurore ovale, les émissions polaires, et les spots créés par l'interaction avec les satellites naturels de Jupiter.

Jupiter a des aurores, lumineuses et persistantes, autour des deux pôles. Contrairement aux aurores de la Terre, qui sont transitoires et ne se produisent que lors d'activités solaires accrues, celles de Jupiter sont permanentes même si leur intensité varie de jour en jour. Elles se composent essentiellement de trois éléments : (1) les ovales principaux qui sont clairs, étroits (moins de 1 000 km de largeur) et faits d'éléments circulaires situés à environ 16° par rapport aux pôles magnétiques ; (2) les spots auroraux des lunes, qui correspondent aux empreintes des lignes de champ magnétique connectant leurs ionosphères à celle de Jupiter ; et (3) les émissions polaires éphémères situées au sein des principaux ovales. Bien que les émissions des aurores soient détectées sur l'ensemble du spectre électromagnétique, depuis les ondes radio jusqu'aux rayons X (jusqu'à 3 keV), elles sont plus lumineuses dans l'infrarouge moyen (longueur d'onde de 3 à 14 μm) et dans les régions du spectre de l'ultraviolet profond (longueur d'onde entre 80 et 180 nm).

Les ovales principaux sont la partie dominante des aurores joviennes. Ils ont une structure et une position stables mais leur intensité est fortement modulée par la pression du vent solaire - plus le vent solaire est fort, plus les aurores boréales sont faibles. Comme mentionné ci-dessus, les principaux ovales sont maintenus par les influx importants d'électrons accélérés par la perte de potentiel électrique entre le plasma du magnéto-disque et l'ionosphère jovienne. Ces électrons transportent des courants alignés sur les champs qui maintiennent la co-rotation du plasma dans le magnéto-disque. Les baisses de potentiel se développent parce que le plasma, rare en dehors de la section équatoriale, ne peut transporter qu'un courant d'une puissance limitée. Les électrons ont une énergie de précipitation dans la gamme de 10 à 100 keV et pénètrent profondément dans l'atmosphère de Jupiter où ils ionisent et excitent l'hydrogène moléculaire à l'origine des émissions ultraviolettes. L'apport total d'énergie dans l'ionosphère est de 10 à 100 TW. En outre, les courants circulant dans l'ionosphère chauffent celle-ci par effet Joule. Ce chauffage, qui produit jusqu'à 300 TW de puissance, est responsable du rayonnement infrarouge fort des aurores de Jupiter et partiellement responsable du chauffage de la thermosphère de Jupiter.

Puissance émise par les aurores joviennes dans différentes parties du spectre
Émission Jupiter spot de Io
Radio (KOM, <0,3 MHz) ~1 GW  ?
Radio (HOM, 0,33 MHz) ~10 GW  ?
Radio (DAM, 340 MHz) ~100 GW 0,11 GW (Io-DAM)
IR (hydro-carbones, 714 μm) ~40 TW 30100 GW
IR (H3+, 34 μm) 48 TW
Visible (0,3851 μm) 10100 GW 0,3 GW
UV (80180 nm) 210 TW ~50 GW
Rayons X (0,13 keV) 14 GW  ?

Il a été établi que les spots correspondent aux trois lunes galiléennes : Io, Europe et Ganymède. L'apparition de ces spots est due au fait que la co-rotation du plasma est ralentie au voisinage des lunes. Le spot le plus lumineux est lié à Io qui est la principale source du plasma présent dans la magnétosphère (voir ci-dessus). Le spot ionien est supposé associé aux ondes d'Alfvén coulant depuis l'ionosphère jovienne jusqu'à l'ionosphère ionienne. Les spots d'Europe et de Ganymède sont moins intenses car ces lunes sont de faibles sources de plasma en raison de la sublimation de la glace à leur surface.

Des arcs brillants et des spots apparaissent sporadiquement à l'intérieur de l'ovale principal. Ces phénomènes éphémères sont supposés être liés à l'interaction avec les vents solaires. Les lignes de champ magnétique dans cette région sont supposées ouvertes ou mappées sur la magnéto-queue. Les ovales secondaires observés à l'intérieur de l'ovale principal peuvent être liés à la frontière entre les lignes de champ magnétique ouvertes et fermées ou aux cornets polaires. Les émissions aurorales polaires sont similaires à celles observées autour des pôles de la Terre : dans les deux cas, elles apparaissent lorsque les électrons sont accélérés vers la planète par la chute de potentiel lors de la reconnexion du champ magnétique solaire avec celui de la planète. Les régions au sein des deux principaux ovales émettent la majorité des rayons X des aurores. Le spectre de ces rayons X auroraux est composé des raies d'oxygène et de soufre hautement ionisés qui apparaissent probablement quand ces ions, possédant une énergie de plusieurs centaines de kiloélectronvolts, sont précipités dans l'atmosphère polaire de Jupiter. La source de ces précipitations reste inconnue.

Jupiter en tant que pulsar

Jupiter est une puissante source d'ondes radios dans les régions du spectre allant de quelques kilohertz à des dizaines de mégahertz. Les ondes radios avec une fréquence de moins de 0,3 MHz (et donc avec des longueurs d'ondes supérieures à 1 km) sont appelées les rayonnements kilométriques joviens ou KOM. Les fréquences dans l'intervalle de 0,3 à 3 MHz (avec une longueur d'onde de 100 à 1 000 mètres) sont appelées les rayonnements hectométriques ou HOM, et les émissions dans l'intervalle de 3 à 40 MHz (avec une longueur d'onde de 10 à 100 mètres) sont référencées sous le terme rayonnement décamétrique ou DAM. Ce dernier type de rayonnement fût le premier à être observé depuis la Terre et sa périodicité d'environ 10 heures aida à identifier son origine, la planète Jupiter. La partie la plus puissante des émissions décamétriques, relative à Io et au système Io-Jupiter, est appelée Io-DAM.

Graphique décrivant le rayonnement de Jupiter comme étant plus élevé que les rayonnements des autres planètes
Le spectre radio de Jupiter comparé avec le rayonnement kilométrique de Neptune, Uranus, la Terre, et Saturne

La majorité de ces émissions est supposée produite par un mécanisme appelé Instabilité Maser Cyclotron qui se développe à proximité des aurores, quand les électrons rebondissent et sont projetés entre les pôles. Les électrons impliqués dans la production des ondes radio sont probablement ceux qui transportent des courants à partir des pôles de la planète jusqu'au magnétodisque. L'intensité des émissions radio de Jupiter varie généralement en douceur au court du temps. Toutefois, Jupiter émet périodiquement de brèves mais puissantes rafales (S-bursts en anglais, ou encore "Sursaut-millisecondes") qui peuvent éclipser toutes les autres composantes du spectre. La puissance totale émise par la composante de DAM est d'environ 100 GW, tandis que la puissance des composantes HOM et KOM est d'environ 10 GW. En comparaison, la puissance totale des émissions de radio terrestre est d'environ 0,1 GW.

Les émissions de particules et les émissions radio sont fortement modulées par la rotation de la planète, ce qui la rend, en un sens, similaire à un pulsar. Cette modulation périodique est probablement induite par des asymétries dans la magnétosphère jovienne qui sont causées par l'inclinaison du moment magnétique par rapport à l'axe de rotation ainsi que par les anomalies magnétiques aux hautes latitudes. La physique qui régit les émissions radio de Jupiter est similaire à celle des pulsars radio. Elles ne diffèrent que par l'échelle, aussi Jupiter peut être considéré comme un pulsar radio très faible. En outre, les émissions radio de Jupiter dépendent fortement de la pression du vent solaire et, par conséquent, de l'activité solaire.

En plus de rayonnements dont la longueur d'onde est relativement longue, Jupiter émet aussi du rayonnement synchrotron (aussi connu sous le nom de rayonnement décimétrique de Jupiter ou rayonnement DIM) avec des fréquences dans la gamme de 0,1 à 15 GHz (longueur d'onde de 0,02 à 3 m) qui est le Bremsstrahlung d'électrons relativistes piégés dans les ceintures de radiation internes de la planète. L'énergie des électrons qui contribuent aux émissions DIM est de 0,1 à 100 MeV, tandis que le principal apport vient des électrons ayant une énergie dans la gamme de 1 à 20 MeV. Ce rayonnement est bien compris et a été utilisé depuis le début des années 1960 pour étudier la structure du champ magnétique de la planète et des ceintures de radiations. Les particules dans les ceintures de radiation sont originaires de la magnétosphère externe et sont adiabatiquement accélérées quand elles sont transportées vers la magnétosphère interne.

La magnétosphère de Jupiter éjecte des flux d'électrons de haute énergie et d'ions dont l'énergie peut aller jusqu'à des dizaines de mégaélectronvolts qui voyagent aussi jusqu'à l'orbite terrestre. Ces flux sont très collimatés et varient selon la période de rotation de la planète, comme les émissions radio. À cet égard, Jupiter est similaire à un pulsar.

Page générée en 0.127 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise