Magnétosphère de Jupiter - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Découverte et exploration

Image d'artiste de la sonde Galileo aux abords de Io.

Il a été suggéré que les émissions radio de la magnétosphère de Jupiter pouvaient avoir été entendues pour la première fois par Nikola Tesla en 1899, quand il clama avoir reçu des signaux radio des martiens. Mars et Jupiter étaient à proximité l'un de l'autre dans le ciel à cette époque. La première preuve de l'existence du champ magnétique du Jupiter est apportée en 1955, avec la découverte des radio-émissions décamétriques ou DAM. Comme le spectre du DAM est étendu jusqu'à 40 MHz, les astronomes ont conclu que Jupiter devait posséder un champ magnétique avec une force d'environ 1 milli-tesla (10 gauss). En 1959, les observations dans la partie des micro-ondes du spectre électromagnétique (EM) (de 0,1 à 10 GHz) conduisent à la découverte des rayonnements décimétriques joviens (DIM) et à la prise de conscience qu'il s'agissait de rayonnement synchrotron émis par des électrons relativistes piégés dans les ceintures de radiation de la planète. Ces émissions synchrotron ont été utilisées pour estimer le nombre et l'énergie des électrons autour de Jupiter et ont conduit à de meilleures estimations du moment magnétique et de son inclinaison. En 1973, le moment magnétique était connu dans un intervalle allant du simple au double, tandis que l'inclinaison était correctement estimée à 10° environ. La modulation de DAM de Jupiter par Io (le DAM dit de Io) a été découverte en 1964 et a permis de déterminer avec précision la période de rotation de Jupiter. La découverte définitive du champ magnétique de Jupiter eut lieu en décembre 1973 lorsque la sonde Pioneer 10 a survolé la planète.

De 1973 à 2009, huit sondes ont croisé le voisinage de Jupiter et toutes ont contribué aux connaissances actuelles de la magnétosphère jovienne. La première sonde spatiale à atteindre Jupiter fut Pioneer 10, en décembre 1973, qui est passée à 2,9 Rj du centre de la planète. Sa jumelle Pioneer 11 visita Jupiter un an plus tard, voyageant le long d'une trajectoire très inclinée et s'approchant de la planète jusqu'à 1,6 Rj. Elle a fourni la meilleure couverture disponible du champ magnétique interne. Le niveau de rayonnement à proximité de Jupiter était dix fois plus puissant que les concepteurs de Pioneer ne l'avait supposé, ce qui fit craindre que la sonde ne puisse survivre à la traversée. Cependant, avec quelques accrocs mineurs, elle a réussi à traverser les ceintures de radiation, sauvée en grande partie par le fait que la magnétosphère de Jupiter avait « tangué » légèrement vers le haut à ce moment, s'éloignant de l'engin spatial. Pioneer 11 a perdu la plupart des images de Io car le rayonnement engendra sur son système d'imagerie polarimètre un certain nombre de commandes fallacieuses. Par la suite, les engins spatiaux Voyager, bien plus avancés technologiquement, ont dû être repensés pour faire face à ce niveau massif d'irradiation.

Les sondes Voyager 1 et 2 sont arrivées à proximité de Jupiter en 1979 et 1980 et ont voyagé presque dans son plan équatorial. Voyager 1, qui est passé à moins de Rj du centre de la planète, était la première à rencontrer le tore de plasma de Io. Voyager 2 est passé à 10 Rj et a découvert la queue dans le plan équatorial. La sonde suivante qui approcha Jupiter fut la Ulysses en 1992. Elle étudia la magnétosphère polaire de la planète.

La sonde Galileo, qui a été mise en orbite autour de Jupiter de 1995 à 2003, a fourni une couverture exhaustive du champ magnétique de Jupiter près du plan équatorial, à des distances allant jusqu'à 100 Rj. Les régions étudiées comprenaient des secteurs de la magnétosphère tels que la magnéto-queue, l'aube et le crépuscule de la magnétosphère. Bien que Galileo survécut avec succès à l'environnement très radiatif de Jupiter, il subit néanmoins quelques problèmes techniques. En particulier, les gyroscopes du vaisseau spatial ont souvent cumulé des erreurs. Plusieurs fois, des arcs électriques se sont produits entre les pièces en rotation et celles qui ne l'étaient pas, l'amenant à entrer en mode sécurisé, ce qui a conduit à la perte totale des données provenant des 16e, 18e et 33e orbites. Le rayonnement a également causé des changements de phase de l'oscillateur à quartz ultra-stable de Galileo.

Quand la sonde Cassini survola Jupiter en 2000, elle conduisit des mesures coordonnées avec celles de Galileo. La dernière sonde ayant visité Jupiter était New Horizons en 2007. Elle conduisit une étude unique de la magnéto-queue jovienne, voyageant jusqu'à 2 500 Rj sur toute sa longueur. La couverture de la magnétosphère de Jupiter reste encore beaucoup moins bien connue que le champ magnétique terrestre. Les futures missions, Juno par exemple, sont importantes pour mieux comprendre la dynamique de la magnétosphère jovienne.

En 2003, la NASA a conduit une étude conceptuelle appelée « Exploration humaine des planètes extérieures » (HOPE) concernant l'exploration future du système solaire externe. La possibilité de créer une base sur la surface de Callisto a été évoquée en raison des faibles niveaux de rayonnement autour de la lune de Jupiter et de sa stabilité géologique. Callisto est le seul des satellites galiléens de Jupiter sur lesquels l'exploration humaine est possible. Les niveaux de rayonnements ionisants sur Io, Europa et Ganymède sont contraires à la vie de l'homme et des mesures de protection adéquates doivent encore être élaborées.

Page générée en 0.124 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise