En physique statistique et en physique du solide, le modèle d’Einstein est un modèle permettant de décrire la contribution des vibrations du réseau à la capacité calorifique d’un solide cristallin. Il est basé sur les hypothèses suivantes :
Ce modèle est nommé d’après Albert Einstein, qui l'a proposé en 1907.
Les vibrations du réseau cristallin sont quantifiées, c’est-à-dire que les énergies de chaque mode normal de vibration ne peuvent prendre que des valeurs discrètes . Ce modèle repose donc sur la dualité onde-particule des phonons et sur le fait que les 3N oscillateurs harmoniques vibrent à la même fréquence, de manière isotrope.
L’énergie interne U du solide est donnée par la formule :
où ℏ est la constante de Planck réduite, ω est la pulsation d’un oscillateur, N le nombre d’atomes qui constituent le système et où kB est la constante de Boltzmann et T la température absolue.
L’énergie d’un oscillateur harmonique à une dimension vibrant à la fréquence est donnée par :
où n est un nombre quantique
On calcule la fonction de partition d’un oscillateur harmonique quantique qui est donnée par la relation :
où kB est la constante de Boltzmann, T la température absolue et j est un état de l’oscillateur. Il y a un seul état par niveau d’énergie ; la somme devient donc :
En appliquant la formule de la somme d’une suite géométrique, on simplifie la fonction de partition :
On obtient alors l’énergie d’un oscillateur :
avec ce qui donne
On remarque au passage que . Cette énergie correspond à l’énergie de point zéro pour ne pas violer le principe d’incertitude d’Heisenberg. On ne tient pas compte de l’énergie de point zéro ce qui donne L’énergie interne du système est alors :
Le modèle d’Einstein retrouve la loi de Dulong et Petit, pour les hautes températures :
Cependant, à basse température, ce modèle concorde moins avec les mesures expérimentales que celui de Debye :
Lorsque
Cette discordance avec l’expérience peut s’expliquer en abandonnant l’hypothèse selon laquelle les oscillateurs harmoniques vibrent à la même fréquence.
La capacité calorifique CV est définie par :
avec , on obtient
On peut définir la température d’Einstein comme . Tout cela nous donne