Une SOFC est constituée de quatre couches, trois d'entre elles étant des céramiques (d'où leur nom). Une pile unique constituée de ces quatre couches superposées possède une épaisseur typique de quelques millimètres. Des centaines de ces piles sont alors superposées en série pour former ce que le grand public appelle "pile à combustible à oxyde solide". Les céramiques utilisées dans les SOFC ne deviennent actives électriquement et ioniquement que lorsqu'elle atteignent une très haute température, et, par conséquent, les empilements doivent atteindre des températures de l'ordre de 600 à 1 200 °C.
La couche céramique de la cathode doit être poreuse, ce qui permet à l'air d'y circuler, ainsi que dans l'électrolyte. Il y a différents types de matériaux céramiques utilisés pour la cathode, mais tous doivent être conducteurs électriques. La cathode est le côté négatif de la pile au travers duquel les électrons circulent. C'est le côté exposé à l'air dont le rôle est d'utiliser des électrons afin de réduire les molécules d'oxygène de l'air (O2) en ion oxygène (O2-).
L'électrolyte est la couche dense et imperméable aux gaz de chaque pile qui agit comme une membrane séparant le combustible du côté de l'anode de l'air du côté de la cathode. Il y a de nombreux matériaux céramiques étudiés pour leur utilisation comme électrolyte, mais les plus communs sont basés sur l'oxyde de zirconium. En plus d'être imperméable au gaz, l'électrolyte doit être un isolant électrique : les électrons résultant de la réaction d'oxydation du côté anode sont contraints à se déplacer au travers du circuit externe avant de rejoindre le côté cathode. Le requis le plus important pour l'électrolyte, cependant, est qu'il doit être capable de conduire les ions oxygène de la cathode vers l'anode. Pour cette raison, la fiabilité d'un matériau électrolytique se mesure en termes de conductivité ionique.
La couche céramique constituant l'anode doit être très poreuse afin de permettre au combustible d'atteindre l'électrolyte. À l'instar de la cathode, elle doit conduire l'électricité. Le matériau le plus couramment utilisé est un cermet constitué de nickel mélangé avec le matériau céramique utilisé pour l'électrolyte dans cette pile particulière. L'anode est communément la couche la plus profonde et la plus solide de chaque pile individuelle, et est parfois celle qui fournit les propriétés mécaniques. D'un point de vue électrochimique, le rôle de l'anode est d'utiliser les ions oxygène diffusant dans l'électrolyte afin d'oxyder le combustible (hydrogène). La réaction d'oxydation entre les ions oxygène et le combustible (hydrogène) produit de l'eau et de l'électricité.
L'interconnexion peut être une couche métallique ou céramique disposée entre chaque pile individuelle. Son rôle est d'assurer une connexion en série de chaque pile, combinant ainsi la production de chacune. En raison de son exposition aux côtés réducteurs et oxydants de chaque pile aux hautes températures, l'interconnexion doit être extrêmement stable. C'est pourquoi les céramiques sont plus stables sur le long terme que les métaux comme matériaux d'interconnexion. Cependant, ces céramiques sont très onéreuses. Heureusement, les matériaux métalliques peu coûteux deviennent plus intéressants au fur et à mesure que les SOFC à plus basse température (600 à 800 °C) sont développées.