Référentiel galiléen - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Invariances

Emmy Noether a montré, par ses théorèmes de symétrie, le rapport remarquable entre l'homogénéité du temps et la conservation de l'énergie, l'homogénéité de l'espace et la conservation de la quantité de mouvement, l'isotropie de l'espace et la conservation du moment cinétique.

Principe de relativité

Les référentiels galiléens sont employés en mécanique newtonienne et en relativité restreinte. Dans ces deux théories, les référentiels inertiels utilisés sont supposés en mouvement rectiligne uniforme les uns par rapport aux autres, de plus le principe de relativité stipule que :

  • Deux expériences de mécanique newtonienne, ou classique, faites identiquement dans deux référentiels inertiels distincts s'y déroulent de manière identique. En relativité resteinte, il s'agit de tous types d'expériences physiques (hormis la gravitation qui n'y est pas définie), et pas seulement de mécanique.
Par exemple, en mécanique classique, en considérant le sol terrestre comme un référentiel galiléen dans lequel les corps ne subissent que l'influence de la gravitation (en première approximation), le référentiel lié à un train passant à vitesse constante par rapport au sol est lui aussi inertiel (sous l'influence aussi de la gravitation). Supposons deux personnes immobiles respectivement par rapport au sol terrestre pour l'une et par rapport au train pour l'autre. Supposons que ces deux personnes aient chacune en main un objet en tous points identiques et lâchent chacune l'objet à un mètre du sol. Ces deux personnes observent alors chacune une chute de leur objet : chacune observera une chute (verticale) parfaitement identique aux observations de l'autre (les mesures faites par l'une et l'autre personne sont identiques).
  • Une expérience observée depuis deux référentiels galiléens distincts (supposés en mouvement relatif de translation rectiligne uniforme) suit une loi identiquement écrite dans les deux référentiels. La différence entre les deux lois n'étant que la valeur numérique d'un paramètre (sous forme vectorielle, en général) qui change d'un référentiel à l'autre du fait de la vitesse relative des deux référentiels. Ce paramètre change les observations et mesures de l'expérience faites depuis l'un ou l'autre référentiel.
Dans l'exemple cité ci-dessus, si une des personnes regarde la chute de l'objet de l'autre, elle ne verra pas une chute identique : en plus du mouvement vertical, elle y verra un mouvement horizontal rectiligne uniforme, le tout formant à ses yeux une trajectoire à la forme parabolique.

En relativité générale

En relativité générale, toute masse et toute énergie cinétique impliquent une courbure de l'espace-temps et donc une déviation des trajectoires possibles dans l'environnement de la masse : cet effet est la gravitation. Au voisinage d'aucune masse l'espace est homogène et isotrope, donc il ne peut y avoir de véritable référentiel galiléen au sens où cela est compris en relativité restreinte ou en physique classique.

Toutefois, un référentiel en chute libre dans un champ de gravitation est localement inertiel : d'après le principe d'équivalence, au voisinage immédiat d'une géodésique tout corps suit une géodésique parallèle et à la même vitesse, donc dans ce référentiel, et très localement (mathématiquement : en un point), tout corps vérifie le mouvement inertiel. Bien sûr, il faut pour accepter cela parler de corps quasi-virtuel aux énergies et masses trop petites pour avoir un effet perceptible sur l'espace-temps.

De même, loin de toute masse (mathématiquement : à une distance infinie) un référentiel est inertiel.

Dans cette théorie, du fait du principe d'équivalence, les référentiels galiléens ne sont pas tous en translation rectiligne uniforme les uns par rapport aux autres ; et en toute rigueur, l'espace étant courbe, cette notion de « translation rectiligne uniforme » ne peut avoir le même sens que dans un espace affine. Une des utilités des référentiels galiléens est que les égalités tensorielles y sont plus simples à établir que dans le cas général d'un référentiel quelconque et qu'une fois établie pour un type de référentiel, une égalité tensorielle est vraie pour tout type de référentiel (donc est toujours vraie).

Page générée en 0.587 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise