Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple :
Cette notion intuitive de courbure se précise et admet une généralisation à des espaces de dimensions quelconques dans le cadre de la géométrie riemannienne.
Comme l'a montré Gauss pour le cas des surfaces (theorema egregium), il est très remarquable que la courbure d'un objet géométrique puisse être décrite de façon intrinsèque, c’est-à-dire sans référence aucune à un « espace de plongement » dans lequel se situerait l'objet considéré. Par exemple, le fait qu'une sphère ordinaire soit une surface à courbure positive constante est complètement indépendant du fait que nous voyons habituellement cette sphère comme étant plongée dans notre espace euclidien à trois dimensions. La courbure de cette sphère pourrait très bien être mesurée par des êtres intelligents bidimensionnels vivant sur la sphère (sortes de « fourmis bidimensionnelles »), à partir de mesures de longueurs et d'angles effectuées sur la sphère. La légende veut que Gauss se soit interrogé sur ces questions en étant confronté aux difficultés de cartographie de la Terre.
On peut définir la courbure d'un arc de l'espace euclidien à deux dimensions de plusieurs façons équivalentes. Il existe cependant deux conventions en usage, l'une faisant de la courbure une quantité obligatoirement positive, l'autre donnant une version algébrique de la courbure. Elle se calcule en chaque point de la courbe, moyennant certaines hypothèses sur les dérivées des fonctions servant à définir celle-ci.
La courbure quantité positive peut être vue comme la norme du vecteur accélération pour un mobile parcourant la courbe à vitesse constante égale à 1. C'est aussi l'inverse du rayon du cercle osculateur, cercle venant épouser la courbe au plus près au voisinage du point d'étude. En ce sens, la courbure indique la propension de la courbe à se comporter comme un cercle de plus ou moins grand rayon, c’est-à-dire à former un virage plus ou moins serré.
Pour introduire des versions algébrisées de la courbure, il faut munir le plan et la courbe d'une orientation et introduire un repère mobile adapté au mouvement : le repère de Frenet. Le signe de la courbure s'interprète alors comme l'indication du sens dans lequel est tournée la concavité de la courbe. La courbure désigne aussi le taux (par unité d'abscisse curviligne) auquel les vecteurs du repère de Frenet tournent par rapport à une direction fixe.
La courbure peut ensuite être généralisée aux courbes gauches (courbes tracées dans l'espace à trois dimensions), mais les mêmes raisons qui empêchent d'orienter de façon compatible tous les plans de l'espace empêchent de définir une courbure algébrique ; elle est donc par convention toujours positive. La courbure s'accompagne alors d'un autre invariant, la torsion.
Le rayon de courbure est défini comme l'inverse de la courbure.