Les projections
Définition
La projection cartographique est un ensemble de techniques permettant de représenter la surface de la Terre dans son ensemble ou en partie sur la surface plane d'une carte.
Les types de projections
- La projection équivalente : conserve localement les surfaces.
- La projection conforme : conserve localement les angles, donc les formes.
- La projection aphylactique : elle n'est ni conforme ni équivalente, mais peut être équidistante, c'est-à-dire conserver les distances sur les méridiens.
Conformité géométrique
- Particularité des cartes à petite échelle
- Projections équivalentes
- Projections aphylactiques
- Projections conformes
La conformité géométrique ne peut être atteinte qu’approximativement, moins bien dans les projections équivalentes ou conformes. Les projections conformes ont la particularité d’être géométriquement conformes pour les très petite surfaces. Un tout petit carré sur la carte correspond à un carré à la surface du globe.
- Déformation des distances
La déformation des distances dépend de la direction, parmi le nombre infini de directions au départ d’un point, seules quatre directions donnent des distances exactes compte tenu de l’échelle. La déformation des distances dépend de la direction et de la situation du point de départ. La déformation des distances dépend de la situation du point de départ, l’échelle en un point donné est la même dans toutes les directions pour des distances infiniment petites, mais elle diffère d’un point a un autre.
La projection cylindrique
On projette l'ellipsoïde sur un cylindre qui l'englobe. Celui-ci peut être tangent au grand cercle, ou sécant en deux cercles. Puis on déroule le cylindre pour obtenir la carte.
- Projection de Mercator (conforme) : La projection de Mercator est une projection cylindrique du globe terrestre sur une carte plane nommée par Gerardus Mercator en 1569. Les parallèles et les méridiens sont des lignes droites et l'inévitable étirement Est-Ouest en dehors de l'équateur est accompagné par un étirement Nord-Sud correspondant, de telle sorte que l'échelle Est-Ouest est partout semblable à l'échelle Nord-Sud
- Projection de Peters (équivalente) : La projection de Peters est une projection qui maintient la proportion entre les surfaces sur la carte et les surfaces réelles. Ainsi, les rapports entre les surfaces des pays sur la carte correspond au rapport de leurs surfaces réelles.
- Projection de Robinson (pseudo-cylindrique, aphylactique) : Cette projection est définie comme pseudo-cylindrique car les parallèles sont des segments et les méridiens sont espacés régulièrement. Dans cette projection on retrouve :
-
- les lignes de latitude constante qui sont des parallèles.
- les parallèles qui sont régulièrement espacées entre 38 °S et 38 °N puis l'écart entre deux parallèles qui diminue.
- un méridien central droit.
- les méridiens qui sont courbes et espacés régulièrement.
- les pôles qui sont représentés par des segments qui font 0,5322 fois la taille de l'équateur.
- Projection UTM, aussi appelée Gauss-Kruger (conforme): Cette projection est une projection cylindrique où l’axe du cylindre croise perpendiculairement l’axe des pôles de l’ellipsoïde terrestre au centre de l’ellipsoïde.
- Projection cylindrique équidistante. La projection cylindrique équidistante, encore appelée projection équi-rectangulaire ou projection géographique, est un type de projection cartographique très simple attribué à Marinus de Tyr vers 100 ap. J.-C.1 La projection consiste à projeter la surface d'une sphère sur la surface d'un cylindre, en prenant comme origine des vecteurs de projection l'axe des pôles géographiques du globe, et en projetant à latitude constante tout autour de cet axe. Les méridiens de longitude sont alors projetés sur des lignes verticales espacées de manière égale, et les parallèles de latitude sont aussi projetés sur des lignes horizontales équidistantes (espacement horizontal constant).
- Projection de Mercator oblique, utilisée en Suisse par exemple.
La projection conique
On projette l'ellipsoïde sur un cône tangent à un cercle ou sécant en deux cercles. Puis on déroule le cône pour obtenir la carte.
- Projection de Lambert (conforme): Cette projection est une projection conique conforme (qui conserve les angles).
Dans cette projection on retrouve :
-
- les parallèles (latitude constante) qui sont des cercles concentriques autour du point P, projection du pôle Nord et sommet du cône.
- les méridiens (longitude constante) qui sont des droites concourantes en P.
- l'axe des ordonnées qui est la projection du méridien de référence.
- l'origine qui se trouve au point de référence.
- le cercle, projection du parallèle de référence, qui est appelé isomètre ou isomètre de référence. En effet, c'est selon ce cercle que l'on définit l'échelle de la carte.
- les angles qui sont conservés.
La projection azimutale
On projette l'ellipsoïde sur un plan tangent en un point ou sécant en un cercle. Il existe trois types de projections azimutales, qui se différencient par la position du point de perspective utilisé pour la projection:
-
- Projection stéréographique : Le point de perspective est placé sur le sphéroïde ou l'ellipsoïde à l'opposé du plan de projection. Le plan de projection qui sépare les deux hémisphères nord et sud de la sphère, est appelé plan équatorial.
-
- Projection gnomonique : Le point de perspective est au centre du sphéroïde.
-
- Projection de Fuller : Projection gnomonique sur un polyèdre, cuboctaèdre (14 faces)ou icosaèdre (20 faces) . La projection de Fuller de la Terre est la projection cartographique d'une carte sur la surface d'un polyèdre. Elle a été créée par Richard Buckminster Fuller, en 1946 pour une projection sur un cuboctaèdre et sur un icosaèdre en 1954. Les 20 triangles peuvent être positionnés différemment, cette carte n'ayant ni haut ni bas.
-
- Projection orthographique : Le point de perspective est à une distance infinie. On perçoit un hémisphère du globe comme si on était situé dans l'espace. Les surfaces et formes sont déformées, mais les distances sont préservées sur des lignes parallèles.
Les projections uniques
- La projection sinusoïdale La projection équivalente et équidistante de Sanson-Flamsteed est une projection sinusoïdale, elle est utilisée pour une représentation globale de la planète. Il s'agit en fait d'un cas particulier de la projection de Bonne.
Dans cette projection les surfaces sont conservées et la représentation des pôles est moins déformée qu'avec une projection cylindrique. Contrairement au cas de la projection de Bonne, les latitudes sont représentées comme des droites parallèles entre elles. Les déformations minimales se trouvent autour de l'équateur et du méridien central. Contrairement à une simple projection sinusoïdale, une projection de Sanson-Flamsteed "découpe" la carte pour en "redresser" les continents. Plus précisément, cette représentation est donc souvent utilisée en projection interrompue centrée sur différents méridiens.