Titane - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Histoire

Le titane a été découvert par le révérend William Gregor en 1794, minéralogiste et pasteur britannique. En analysant des sables de la rivière Helford dans la vallée de Menachan en Cornouailles, il isola ce qu'il nomma du sable noir, connu aujourd’hui sous le nom d'Ilménite. Suite à plusieurs manipulations physico-chimiques (extraction du fer par des procédés magnétiques et traitement du résidu par de l’acide chlorhydrique), il produisit un oxyde impur d'un métal inconnu. Il nomma cet oxyde menachanite. Indépendamment de cette découverte, quatre ans plus tard, Martin Heinrich Klaproth, professeur de chimie analytique à l'université de Berlin, identifia le même métal. Alors qu'il analysait les propriétés du schörlite rouge, aujourd’hui connu sous le nom de rutile, il conclut que le minerai contenait un métal inconnu identique à celui de Gregor. Il lui donna son nom actuel de « Titane », tiré de la mythologie grecque, en ignorant totalement ses propriétés physico-chimiques. Il a fallu attendre plus d'un siècle après la découverte de Gregor pour que l'américain Matthew Albert Hunter, chercheur au Rensselaer Polytechnic Institute à Troy (New-York), soit capable, en 1910, de produire du titane pur à 99 %. Les premières obtentions de titane par Hunter ne furent pas suivies du moindre développement industriel.

En 1939, le procédé industriel de production fut finalement mis au point par Wilhelm Justin Kroll, métallurgiste et chimiste luxembourgeois, consultant au Union Carbide Research Laboratory de Niagara Falls (New-York) par réduction du TiCl avec du magnésium.

Propriétés mécaniques

Érosion

La couche d’oxyde très adhérente et dure explique la longévité de pièces en titane soumises aux chocs de particules en suspension dans les fluides. Cet effet est amplifié par la capacité qu'a cette couche de se régénérer. L'érosion dans l’eau de mer est augmentée par un débit plus élevé ou une granulométrie plus faible.

Résistance et ductilité

Le titane est considéré comme un métal ayant une résistance mécanique importante et une bonne ductilité dans les conditions standard de température. Sa résistance spécifique (rapport résistance à la traction / densité) est , par exemple, plus élevé que celle de l’aluminium ou l’acier. Sa résistance est décroissante avec à la température avec un replat entre -25 °C et 400 °C. En dessous de -50 °C, dans les domaines de températures cryogéniques, sa résistance augmente et sa ductilité diminue grandement. Sans qu’il n’y ait aucun fondement théorique, l’endurance en fatigue vaut environ 70% de la résistance à la traction.

Usure et grippage

Jusqu’à ce jour aucune solution satisfaisante n’a encore été mise au point. On a essayé principalement l’oxydation, la nitruration, la boruration et la carburation. On se heurte à de nombreuses difficultés technologiques de réalisation et d’adhérence. Ajoutons que les traitements de surface du titane, modifiant la nature ou la structure de la surface, ne sont à employer qu’avec la plus grande prudence et après une étude approfondie de leur influence ; ils ont généralement un effet néfaste plus ou moins prononcé sur la résistance et la fatigue.

Biocompatibilité

Le titane est l’un des métaux les plus biocompatibles, avec l’or et le platine, c’est-à-dire qu’il résiste totalement aux fluides corporels.

De plus, il possède une haute résistance mécanique et un module d’élasticité très bas (100 000 MPa à 110 000 MPa), plus proche de celui des structures osseuses (20 000 MPa) que l'acier inox (220 000 MPa). Cette élasticité qui favorise remodelage osseux en l'obligeant l'os à travailler (prévention du stress shielding ou ostéoporose peri-implantaire) fait du titane un biomatériau particulièrement intéressant. Il faut cependant noter qu'une élasticité excessive peut aussi compromettre la fonction du biomatériau qui aurait subi une déformation inacceptable.

Le Centre international de recherche sur le cancer (CIRC) a classé le dioxyde de titane dans le groupe 2B « susceptible d’être cancérigène pour l’humain » : les études menées ne permettent pas de conclure.

Page générée en 0.059 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise