Traitement numérique (microprocesseur) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Cet article est utile pour les élèves de collèges et de lycées techniques. Le microprocesseur, cerveau de l'ordinateur, effectue tous les calculs.

Système de numération

Base

Une base B caractérise un système de numération dans lequel tout nombre N peut s'écrire: N = mnBn + mn-1Bn-1 + M1B + m0B0 avec tous les coefficients m < B.

Exemples

  • Le nombre 341(8) en base octale s'écrit: 3 × 8² + 4 × 81 + 1 × 80
  • Le nombre 3AF8(16) en base hexadécimale s'écrit: 3 × 163 + A × 162 + F × 161+8 × 160

Tableau numérique

Base décimale Base binaire Base octale Base hexadécimale
0 0 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
... ... ... ...

Pondération

Représenter un nombre NB de n chiffres (ou symboles), dans une base B donnée, consiste en l'écriture en ligne de ces n chiffres de façon telle que: NB = (§)n-1… (§)i ... (§)5 (§)4 (§)3 (§)2 (§)1 (§)0

Avec: § : un quelconque des B chiffres ou symboles de la base, n - 1, .... i, 5, 4, 3, 2, 1, 0 indices indiquant le rang ou la position d'ordre du chiffre à partir de la droite.

La pondération permet l'attribution d'une valeur numérique ou poids à chacun des rangs. Ce poids P dépend de la base dans laquelle est représenté le nombre et a pour valeur: P=Brang

Exemple

Dans le nombre décimal 425, le chiffre 5 est en position d'ordre 1 ou rang 0, le chiffre 2 en position d'ordre 2 ou rang 1 et le chiffre 4 en position d'ordre 3 ou rang 2.

4 2 5 nombre

2 1 0 rang

Pour la base 10, système décimal :

  • le premier rang ou rang 0 a pour poids 100 soit 1, c'est le rang des unités,
  • le rang suivant, rang 1 a pour poids 101 soit 10 (rang des dizaines),
  • le rang 2 a pour poids 102 soit 100 (rang des centaines),
  • le rang 3 a pour poids 103 Soit 1000 (rang des milliers), et ainsi de suite.

Note

Dans le système binaire on ne parle plus d'unité, de dizaine ou de centaine mais de bit (contraction de l'anglais binary digit, qui signifie rang binaire). On distingue ainsi le bit 0, le bit 1, le bit 2, le bit 3 ... L'équivalent français de bit est élément binaire ou eb, ce terme est relativement peu employé.

Code de Gray (code binaire réfléchi)

Dans le code binaire pur le passage d'une combinaison à l'autre entraîne parfois le changement simultané de plusieurs bits. C'est par exemple le cas pour la transition de l'équivalent décimal 3 à l'équivalent décimal 4 pour laquelle les bits de poids 1 et 2 passent de 1 à 0 et le bit de poids 4 passe de 0 à 1. Pour éviter cet inconvénient, cause d'aléas lorsque le code sert à la représentation de grandeurs physiques à variation continue, informations de position par exemple, il est nécessaire d'imaginer des codes pour lesquels le passage d'une combinaison à la suivante n'implique que la modification d'un bit et d'un seul. De tels codes sont appelés "codes réfléchis". Parmi ceux-ci, le code de Gray est le plus employé.

Plus d'infos sur le Code de Gray sont disponibles sur Internet. Voir sur Google.

Note

Un code réfléchi qui est un code non pondéré ne peut être utilisé pour les opérations arithmétiques.

Page générée en 0.125 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise