Cet article est utile pour les élèves de collèges et de lycées techniques. Le microprocesseur, cerveau de l'ordinateur, effectue tous les calculs.
Une base B caractérise un système de numération dans lequel tout nombre N peut s'écrire: N = mnBn + mn-1Bn-1 + M1B + m0B0 avec tous les coefficients m < B.
Base décimale | Base binaire | Base octale | Base hexadécimale |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 0001 | 1 | 1 |
2 | 0010 | 2 | 2 |
3 | 0011 | 3 | 3 |
4 | 0100 | 4 | 4 |
5 | 0101 | 5 | 5 |
6 | 0110 | 6 | 6 |
7 | 0111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
16 | 10000 | 20 | 10 |
17 | 10001 | 21 | 11 |
18 | 10010 | 22 | 12 |
... | ... | ... | ... |
Représenter un nombre NB de n chiffres (ou symboles), dans une base B donnée, consiste en l'écriture en ligne de ces n chiffres de façon telle que: NB = (§)n-1… (§)i ... (§)5 (§)4 (§)3 (§)2 (§)1 (§)0
Avec: § : un quelconque des B chiffres ou symboles de la base, n - 1, .... i, 5, 4, 3, 2, 1, 0 indices indiquant le rang ou la position d'ordre du chiffre à partir de la droite.
La pondération permet l'attribution d'une valeur numérique ou poids à chacun des rangs. Ce poids P dépend de la base dans laquelle est représenté le nombre et a pour valeur: P=Brang
Dans le nombre décimal 425, le chiffre 5 est en position d'ordre 1 ou rang 0, le chiffre 2 en position d'ordre 2 ou rang 1 et le chiffre 4 en position d'ordre 3 ou rang 2.
4 2 5 nombre
2 1 0 rang
Pour la base 10, système décimal :
Dans le système binaire on ne parle plus d'unité, de dizaine ou de centaine mais de bit (contraction de l'anglais binary digit, qui signifie rang binaire). On distingue ainsi le bit 0, le bit 1, le bit 2, le bit 3 ... L'équivalent français de bit est élément binaire ou eb, ce terme est relativement peu employé.
Dans le code binaire pur le passage d'une combinaison à l'autre entraîne parfois le changement simultané de plusieurs bits. C'est par exemple le cas pour la transition de l'équivalent décimal 3 à l'équivalent décimal 4 pour laquelle les bits de poids 1 et 2 passent de 1 à 0 et le bit de poids 4 passe de 0 à 1. Pour éviter cet inconvénient, cause d'aléas lorsque le code sert à la représentation de grandeurs physiques à variation continue, informations de position par exemple, il est nécessaire d'imaginer des codes pour lesquels le passage d'une combinaison à la suivante n'implique que la modification d'un bit et d'un seul. De tels codes sont appelés "codes réfléchis". Parmi ceux-ci, le code de Gray est le plus employé.
Plus d'infos sur le Code de Gray sont disponibles sur Internet. Voir sur Google.
Un code réfléchi qui est un code non pondéré ne peut être utilisé pour les opérations arithmétiques.