Vecteur de Poynting - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le vecteur de Poynting, noté Π, S, ou encore R est un vecteur dont la direction indique, dans un milieu isotrope, la direction de propagation d'une onde électromagnétique et dont l'intensité vaut la densité de puissance véhiculée par cette onde. Le module de ce vecteur est donc une puissance par unité de surface, c'est-à-dire un flux d'énergie.

Expression générale du vecteur de Poynting

Soient E et B le champ électrique et le champ magnétique. Alors, le vecteur de Poynting est défini par :

\vec \Pi = \frac{\vec E \wedge \vec B}{\mu_0} ,

μ est la perméabilité du vide. Dans un matériau de perméabilité magnétique μ quelconque, il convient de prendre en compte l'excitation magnétique H définie par la relation B = μ H. L'expression plus générale du vecteur de Poynting est donc :

\vec \Pi = \vec E \wedge \vec H .

Puissance électromagnétique traversant une surface Σ

Une conséquence du théorème de Poynting est que la puissance électromagnétique traversant une surface Σ est donnée par le flux du vecteur de Poynting à travers cette surface.

\mathcal P_S=\iint_{\Sigma} \vec {\Pi} \cdot \vec{dS}

Moyenne temporelle en notation complexe

Dans le cas d'une onde électromagnétique plane progressive harmonique, on a \vec E=\vec{E_0}\cos{(\omega t-\phi)} et  \vec B=\vec B_0\cos{(\omega t-\psi)}  ; on peut donc associer des grandeurs complexes aux champs \vec E et \vec B en posant \underline{\vec E}=\underline{\vec E_0}e^{i\omega t}=\vec{E_0}e^{-i\phi}e^{i\omega t} et \underline{\vec B}=\underline{\vec B_0}e^{i\omega t}=\vec{B_0}e^{-i\psi}e^{i\omega t} , où i est le nombre complexe tel que i2 = − 1.

La moyenne temporelle du vecteur de Poynting vaut alors

\langle\vec{\Pi}\rangle_t=\frac{1}{2 \mu_0}\operatorname{Re}\left(\underline{\vec E}\wedge\underline{\vec B}^\star\right) ,

\underline{\vec B}^\star désigne le conjugué de \underline{\vec B} .

Équation de l'énergie d'un champ électromagnétique

Soit Uem l'énergie du champ électromagnétique :

U_{em}=\iiint_{V} W_{em}d\tau avec W densité volumique d'énergie (quantité d'énergie par unité de volume)

On définit la quantité d'énergie quittant un volume τ pendant un temps δt :

      

    
    -\frac{dU_{em}}{d\tau}=-\frac{d}{dt}\iiint_{V} W_{em}d\tau=-\iiint_{V}\frac{\partial W_{em} }{\partial t} d\tau 
      

Soit \vec P , vecteur flux d'énergie du champ. D'après le théorème de Green-Ostrogradsky (Théorème de flux-divergence) on peut dire que le flux sortant du volume V est :

\iint_{\Sigma} \vec P \cdot \vec n dS avec \vec n vecteur normal à la surface. Σ du volume, orienté vers l'extérieur

On peut expliciter la perte d'énergie du volume de la manière suivante :

On peut donc dire que :


-\iiint_{V}\frac{\partial W_{em} }{\partial t} d\tau = \iiint_{V} \vec{\nabla} \cdot \vec P d\tau + travail fourni par le champ à la matière

Calculons ce travail :

\vec F_{Electrique}=q(\vec E+\vec v \times \vec B)

W_{Electrique}=\vec F . \vec dr=q\vec E . \vec {dr} (on voit facilement que la force magnétique ne travaille pas.)

Passons à la puissance fournie par le champ :

pour une charge.

On est dans le cas de N charges :

\frac{\partial W_{Electrique}}{\partial t} = Nq \vec E \cdot \vec v or Nq\vec v = \vec j

donc \frac{\partial W_{Electrique}}{\partial t}=\vec j \cdot \vec E

Cette perte de puissance est égale à la perte d'énergie du champ par unité de temps et de volume donc on écrit finalement :

-\iiint_{V}\frac{\partial W_{em} }{\partial t} d\tau = \iiint_{V} \vec{\nabla} \cdot \vec P d\tau + \iiint_{V} \vec j \cdot \vec E d\tau

Donc finalement on a :

-\frac{\partial W_{em} }{\partial t} =\vec{\nabla} \cdot \vec P  + \vec j \cdot \vec E  eq. de l'énergie du champ électromagnétique

Page générée en 0.254 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise