Pour modéliser l’évolution d’une colonie bactérienne, on a souvent recourt au système d’équations différentielles de Cherruault (1998) :
Ici KM est la constante de Michaelis et νX une constante expérimentale.
La dynamique des populations a été traditionnellement un domaine de prédilection en biomathématiques. Des modèles décrivant l'évolution des populations ont fait l'objet de plusieurs études qui datent du XIXe siècle. Entre autres, les fameuses équations de Lotka-Volterra (1925) permettent de modéliser l’évolution au cours du temps des proies et des prédateurs dans un écosystème. On les appelle quelquefois modèles “proies-prédateurs”, la formule générale est :
Le mathématicien anglais Alan Turing, a cherché à jeter les bases mathématiques d'une théorie de la morphogenèse. Dans un article publié en 1952, intitulé : The chemical basis of morphogenesis, il a montré comment une réaction chimique couplée à un phénomène de diffusion pouvait conduire à des distributions périodiques dans l'espace des concentrations de certaines espèces chimiques. Selon Turing, un système de substances chimiques appelées "morphogènes" réagissant ensemble et diffusant à travers les tissus rend adéquatement compte du phénomène principal de morphogenèse. À condition toutefois que des interactions entre réactions chimiques aient lieu avec autocatalyse, rétroaction, échanges croisés etc. et donnent lieu à des processus non linéaires avec rupture de symétrie.
Le système mixte de Marchuk (1994) est l'un des modèles les plus courants qui décrivent l’évolution d’une maladie infectieuse d'origine virale. Il prend en considération les réactions de défense de l’organisme qui sont traduites par des équations mathématiques. Ce modèle permet d’expliquer les caractéristiques fonctionnelles du système immunitaire ainsi que le rôle de la température, le mécanisme de la réponse immunitaire, la nature de l'agent viral etc. [9] [pdf]
Bien que chaque système biologique requiert ses propres techniques de modélisation, il existe des méthodes de modélisation très générales et fort utiles que nous allons passer en revue.
Cette technique de modélisation convient très bien aux systèmes de transformations chimiques et d'échanges cellulaires. On peut néanmoins l'étendre à bien d'autres circonstances. Plusieurs étapes sont nécessaires pour élaborer un modèle compartimental.
Les biologistes utilisent largement cette méthode pour l'analyse quantitative des flux métaboliques, de la diffusion des marqueurs et des médicaments en pharmacocinétique [5].
De nombreux systèmes biologiques sont constitués d'interaction entre deux ou plusieurs substances. Si l'on modélise l'évolution au cours du temps et dans l'espace, des concentrations ou des pressions partielles de ces substances on est conduit à des systèmes aux dérivées partielles. Dans le cas d'une dimension de l'espace x on obtient des EDP du type :
où y et z sont les concentration de deux substances, K est une constante de diffusion, c est la constante de convection ou de transport, Q est le débit de convection et f est une fonction donnée qui décrit l'interaction entre les deux substances.
Des relations supplémentaires qui émanent de l'observation (conditions initiales et limites) sont nécessaires pour assurer l'unicité de la solution. On utilise concrètement ce modèle pour l'étude quantitative des échanges gazeux respiratoires entre les alvéoles et les capillaires sanguins. [6].