Biomathématique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Recherches

La suite est une liste des différentes voies de recherche en biomathématiques.

Modélisation cellulaire et biologie moléculaire

Ce domaine a reçu un important élan grâce au développement de la biologie moléculaire.

La modélisation est normalement faite avec une ou plusieurs équations différentielles ordinaires (EDO). Dans la plupart des cas, de tels systèmes d'EDO peuvent être résolus, de manière analytique ou numérique. Une méthode populaire pour résoudre numériquement les EDO est l'algorithme Runge-Kutta.

La modélisation stochastique est plus compliquée et utilise l'Algorithme Gillespie (en). L'algorithme Gillespie est normalement utilisé pour simuler un petit nombre de systèmes chimiques (comme 100 copies d'un ARNm, de protéines, ou de ribosomes). Cet algorithme simule exactement un échantillon de la solution de l'équation chimique générale.

Modélisation de systèmes physiologiques

  • Modélisation des maladies cardiovasculaires
  • Modélisation du cœur à plusieurs échelles

Modélisation dans l'espace

Un travail intéressant dans ce domaine est celui d'Alan Turing dans son article sur la morphogenèse intitulé The chemical Basis of Morphogenesis, publié en 1952.

  • Le comportement en essaims.
  • La théorie chimico-mécanique de la morphogenèse.
  • La formation de patrons biologiques.

Ces exemples sont caractérisés par des mécanismes complexes et non-linéaires, et il est devenu clair que leur compréhension ne peut être entière qu'avec des modèles mathématiques. De par la grande diversité des thèmes, la recherche en biomathématiques est souvent faite en collaboration avec des mathématiciens, des physiciens, des biologistes, des médecins, des zoologistes, des chimistes, etc.

Importance

Il y a longtemps que les scientifiques appliquent les mathématiques à la biologie, mais ce n'est que récemment qu'il y a eu un tel essor, pour différentes raisons :

  • L'explosion de la masse de données dues à la révolution de la génomique, qui est difficile à exploiter sans l'utilisation d'outils analytiques.
  • Le récent développement d'outils comme la théorie du chaos pour aider à comprendre les mécanismes complexes et non-linéaires en biologie.
  • L'énorme croissance des capacités de calcul, donc de simulation, des nouveaux ordinateurs.
  • Un intérêt croissant des expériences in silico sur la recherche humaine et animale.

Bibliographie

  • Yves Cherruault, Biomathématiques, Presses universitaires de France (1983) ISBN 2-13-037657-6.
  • Aziz-Alaoui & Cyrille bertelle (editors), Emergent Properties in Natural and Artificial Dynamical Systems, Springer New York (2006) ISBN 978-3-540-34822-1.
Page générée en 0.082 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise