Selon les auteurs, une chaîne de Markov est de manière générale un processus de Markov à temps discret ou un processus de Markov à temps discret et à espace d'états discret. En mathématiques, un processus de Markov est un processus stochastique possédant la propriété de Markov : de manière simplifiée, la prédiction du futur, sachant le présent, n'est pas rendue plus précise par des éléments d'information supplémentaires concernant le passé. Les processus de Markov portent le nom de leur découvreur, Andreï Markov.
Un processus de Markov à temps discret est une séquence
Andrei Markov a publié les premiers résultats sur les chaînes de Markov à espace d'états fini en 1906. Une généralisation à un espace d'états infini dénombrable a été publiée par Kolmogorov en 1936. Les processus de Markov sont liés au mouvement brownien et à l'hypothèse ergodique, deux sujets de physique statistique qui ont été très importants au début du XXe siècle.
C'est la propriété caractéristique d'une chaîne de Markov : la prédiction du futur à partir du présent n'est pas rendue plus précise par des éléments d'information supplémentaires concernant le passé, car toute l'information utile pour la prédiction du futur est contenue dans l'état présent du processus. La propriété de Markov faible possède plusieurs formes équivalentes qui reviennent toutes à constater que la loi conditionnelle de
On suppose le plus souvent les chaînes de Markov homogènes, i.e. on suppose que le mécanisme de transition ne change pas au cours du temps. La propriété de Markov faible prend alors la forme suivante :
Cette forme de la propriété de Markov faible est plus forte que la forme précédente, et entraîne en particulier que
Dans la suite de l'article on ne considèrera que des chaînes de Markov homogènes. Pour une application intéressante des chaînes de Markov non homogènes à l'optimisation combinatoire, voir l'article Recuit simulé. Il existe une propriété de Markov forte, liée à la notion de temps d'arrêt : cette propriété de Markov forte est cruciale pour la démonstration de résultats importants (divers critères de récurrence, loi forte des grands nombres pour les chaînes de Markov). Elle est énoncée dans l'article "Propriété de Markov".
Critère fondamental — Soit une suite
et supposons que la suite
Petit Pierre fait la collection des portraits des onze joueurs de l'équipe nationale de football, qu'il trouve sur des vignettes à l'intérieur de l'emballage des tablettes de chocolat ; chaque fois qu'il achète une tablette il a une chance sur 11 de tomber sur le portrait du joueur n°
où les variables aléatoires