Entier quadratique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications

Classification des nombres premiers

La structure des entiers sur les corps quadratiques amène à étudier non pas les diviseurs d'un nombre premier p, mais les facteurs premiers de l'idéal pZ[u]. Cette analyse est utile pour la résolutions d'équations diophantiennes.

Nombre premier inerte

La première situation est celle où pZ[u] est un idéal premier :

  • On dit que p est inerte dans Z[u] si l'idéal principal engendré par p est premier.
  • Le nombre premier p est inerte si et seulement si -d n'est pas un résidu quadratique modulo p.
  • Le corps premier Z[u]/pZ[u] est isomorphe à Fp2.

Nombre premier décomposé

La deuxième situation est celle où pZ[u] n'est pas premier et contient dans sa décomposition deux idéaux premiers :

  • On dit que p est décomposé si son idéal principal contient deux idéaux premiers distincts.

Soit σ l'endomorphisme de Z[u] qui à 1 associe 1 et à √d associe -√d. Cette application est un morphisme d'anneau. L'application σ est dite conjugué. Dans le cas où d est négatif, elle se confond avec la fonction conjugué des nombres complexes.

  • Les deux idéaux sont conjugués l'un de l'autre et ce sont les seuls idéaux de norme p.

L'anneau quotient Z[u] / pZ[u] est isomorphe au produit FpxFp.

Nombre premier ramifié

Il se peut que pZ[u] ne soit contenu que dans un unique idéal premier :

  • On dit que p est ramifié s'il existe un unique idéal premier M contenant p et que pZ[u] n'est pas premier.

Si ce cas se produit, alors

  • Si le nombre premier p est ramifié, l'idéal pZ[u] est égal au carré de l'unique idéal premier contenant p.
  • Le nombre premier p est ramifié, si et seulement s'il divise le discriminant de l'anneau Z[u].

L'anneau quotient Z[u] / pZ[u] est de cardinal p2 et contient au moins un élément nilpotent, non nul.

Equation diophantienne

La raison initiale du développement des corps quadratiques est l'étude d'équations diophantiennes d'ordre deux. Illustrons par deux exemples comment la théorie précédente permet de venir à bout de questions de cette nature.

x2 + 2.y2 = p

Le cas d égal à -1 ou à -3 est traité dans l'article théorème des deux carrés de Fermat. Ici, d est égal à -2 :

p = x^2 + 2y^2 \Leftrightarrow p\equiv 1\mbox{ ou }p\equiv 3\pmod{8}

En effet, calcul analogue à celui présenté pour les entiers de Gauss montre que l'anneau est euclidien donc principal. S'il existe un idéal contenant p éléments, comme il est principal et que sa norme est égale à p, le tour est joué. Cette méthode s'applique à tous les anneaux d'entiers euclidiens.

x2 + 5.y2 = p

Si d est égal à 5, la situation est plus délicate car l'anneau Z[i√5] n'est pas euclidien, elle se résume de la manière suivante :

p = x^2 + 5y^2 \Leftrightarrow p\equiv 1\mbox{ or }p\equiv 9\pmod{20},
2p = x^2 + 5y^2 \Leftrightarrow p\equiv 3\mbox{ or }p\equiv 7\pmod{20}.

Si initialement la méthode est la même que pour le cas euclidien, il devient nécessaire d'établir la nature des idéaux de norme p. S'il est principal, une solution existe, sinon la valeur p n'est pas atteinte par la fonction. Le groupe des classes permet de s'en rendre compte. Cette méthode est générale, cependant pour des valeurs importantes de d les calculs s'avèrent fastidieux.

Classification des formes quadratiques

Page générée en 0.144 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise