Loi de réciprocité quadratique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, et plus précisément en théorie algébrique des nombres, la loi de réciprocité quadratique, conjecturée par Euler et Legendre et correctement démontrée pour la première fois par Gauss, établit un lien entre la résolubilité de deux équations diophantiennes quadratiques voisines d'arithmétique modulaire. Cette loi permet en fait de déterminer la résolubilité de n'importe quelle équation quadratique en arithmétique modulaire.

Énoncés

Premier énoncé

Étant donné des nombres premiers distincts p et q impairs, la loi de réciprocité quadratique comprend deux résultats qui dépendent chacun des valeurs respectives de p et de q :

  • si au moins l'un des nombres p et q est congru à 1 modulo 4, alors l'équation d'inconnue x :
x^2\equiv p \pmod{q}
a une solution si et seulement si l'équation d'inconnue y :
y^2\equiv q \pmod{p}
a une solution (les deux solutions sont en général différentes).
  • si p et q sont congrus à 3 modulo 4, alors l'équation d'inconnue x :
x^2\equiv p \pmod{q}
a une solution si et seulement si l'équation d'inconnue y :
y^2\equiv q \pmod{p}
n'a pas de solution.

Énoncé avec le Symbole de Legendre

En utilisant le symbole de Legendre, ces deux résultats peuvent être résumés par l'énoncé unique suivant :

 \left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}

De plus -1 est un résidu quadratique modulo p si et seulement si le reste de la division de p par 4 est égal à 1. Et 2 est un résidu quadratique modulo p si et seulement si le reste de la division de p par 8 est égal à 1 ou 7.

Démonstrations de la loi de réciprocité quadratique

Dans un livre publié en 2000, Lemmermeyer expose l'histoire mathématique des lois de réciprocité en couvrant leurs développements et rassemble des citations de la littérature pour 196 différentes démonstrations de cette loi de réciprocité quadratique.

Les premières démonstrations aujourd'hui considérées comme complètes sont publiées par Gauss dans ses Disquisitiones arithmeticae en 1801. Gauss disposait des preuves dès 1796 (à l'âge de 19 ans). La première de ces preuves repose sur un raisonnement par récurrence. Dans sa correspondance avec son élève Ferdinand Eisenstein, Gauss qualifie cette preuve de laborieuse.

Une autre démonstration est donnée dans l'article Somme de Gauss. Elle se fonde sur les outils de l'analyse harmonique sur un groupe abélien fini et utilise les caractères des groupes abéliens additif et multiplicatif du corps fini Fp à p éléments.

Une des nombreuses démonstrations, fondée sur un calcul de dénombrement, permit à Thomas Joannes Stieltjes d'élucider le caractère quadratique de -1 et 2 avec une approche élémentaire et élégante. Cette démonstration est proposée ici.

Page générée en 0.260 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise