L'Interférométrie à très longue base (ou VLBI, Very Long Baseline Interferometry) est un procédé d'interférométrie astronomique utilisé en radioastronomie, dans lequel les données reçues de chaque antenne du réseau sont marquées avec une heure précise, généralement fournie par une horloge atomique locale, puis enregistrées sur bande magnétique ou disque dur. Les enregistrements de chaque antenne sont ensuite rassemblés et corrélés afin de produire l'image résultante.
La résolution atteignable avec un interféromètre est proportionnelle à la distance séparant les antennes les plus éloignées du réseau et à la fréquence observée. La reconstitution d'observations VLBI étant différée et déportée, cela autorise une longueur de base bien plus grande qu'avec les techniques conventionnelles qui requièrent que les antennes soient physiquement connectées par câble coaxial, guide d'onde, fibre optique ou tout autre type de ligne de transmission. Un éloignement gigantesque des télescopes est possible grâce à la technique d'imagerie par clôture de phase développée par Roger Jennison dans les années 1950, permettant ainsi une résolution supérieure. Les réseaux VLBI fonctionnent généralement en ondes radio; cependant la technique a été récemment portée dans le domaine optique.
L'interférométrie à très longue base est réputée pour l'observation des radiosources lointaines, la poursuite des véhicules spatiaux et diverses applications en astrométrie. De plus, comme cette technique est basée sur la mesure des écarts temporels de l'arrivée d'ondes radios sur différentes antennes, on peut aussi l'utiliser de façon inverse pour évaluer précisément la configuration du réseau d'antennes et ainsi étudier la rotation de la Terre, la tectonique des plaques (avec une précision millimétrique) et d'autres types de géodésie. Cette manière d'utiliser le VLBI nécessite de longues et nombreuses observations de sources lointaines (telles que des quasars) par un réseau global d'antennes.
Le VLBI a permis des avancées scientifiques dans les domaines suivants :
En interférométrie à très longue base, les données sont en général enregistrées au niveau de chaque télescope (par le passé, cela se faisait sur de larges bandes magnétiques, mais aujourd'hui les supports sont des disques durs en RAID). Conjointement aux mesures de signaux astronomiques, l'heure extrêmement précise d'une horloge atomique locale est enregistrée. Les informations sont ensuite rassemblées depuis chaque télescope. Dans le cas de l'e-VLBI, il n'y a pas d'enregistrement local, toutes les observations/datations étant transmises par fibre optique (via le réseau GÉANT) et traitées en direct, ce qui simplifie et accélère grandement les processus d'observation. Malgré le débit important des données, elles peuvent être transmises par connexion internet.
Au lieu de rassemblement, le corrélateur relit les observations. Le décalage temporel entre les sources est synchronisé selon les signaux d'horloge enregistrés et est ajusté à partir d'une estimation des moments d'arrivée des signaux aux différents télescopes. Plusieurs décalages dans une plage de quelques nanosecondes sont ainsi testés jusqu'à trouver les bonnes valeurs.
Chaque antenne se trouve à une distance différente de la source radio, et comme en interférométrie classique, le retard imputé à l'éloignement supplémentaire d'une antenne doit être introduit artificiellement dans le signal de cette antenne. Ce retard peut être approximativement calculé en fonction de la géométrie de la base. La relecture des signaux est synchronisée par la cadence des informations conjointes des horloges atomiques. Si la position des antennes n'est pas connue avec assez de précision ou si les perturbations atmosphériques sont significatives, des ajustements fins des retards doivent être faits jusqu'à l'obtention de franges d'interférence. Si le signal de l'antenne A est utilisé comme référence, les imprécisions et retards induiront les erreurs εB and εC dans les phases respectives des signaux des antennes B et C (voir figure ci-contre). Il en résulte que la phase de la visibilité complexe ne peut être mesurée avec un interféromètre VLBI.
La phase de la visibilité complexe dépend de la symétrie de la distribution de brillance de la source. Toute distribution de brillance peut être décomposée en la somme d'une composante symétrique et d'une composante anti-symétrique. La composante symétrique de la distribution ne contribue qu'à la partie réelle de la visibilité complexe tandis que la composante anti-symétrique ne contribue qu'à la partie imaginaire. Comme la phase de la visibilité complexe mesurée ne peut être connue en VLBI, la symétrie des contributions de la distribution de brillance de la source ne peut l'être non plus.
Roger Jennison développa une nouvelle technique d'obtention d'informations sur la visibilité complexe en présence d'erreurs de retard importantes, à partir d'une grandeur mesurable nommée clôture de phase. Bien que les premières expériences de mesure de la clôture de phase se firent dans le domaine optique, il pressentit que cette technique aurait plus de potentiel en interférométrie radio. En 1958, il démontra son efficacité avec un interféromètre radio, mais sa technique ne se répandit que dans le cadre des longues bases radio à partir de 1974. Au moins trois antennes sont nécessaires. Cette méthode fut utilisée pour les premières expériences VLBI, et une variante (Self-Calibration) est encore utilisée aujourd'hui.