Loi du rayonnement de Kirchhoff - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La loi du rayonnement de Kirchhoff relie l'absorption et l'émission d'un radiateur réel en équilibre thermique. Elle exprime qu'émission et absorption sont liées .

Le physicien allemand Gustav Robert Kirchhoff formula cette loi en 1859 au cours de ses recherches sur la spectroscopie. Elle fut la première pierre de l'étude du rayonnement et par delà de la théorie des quanta de Max Planck.

Notations

  • La luminance monochromatique L_{\Omega \nu}(\beta, \varphi, \nu, T) (unité: W m−2 Hz−1 sr−1) d'un corps de température T est le flux rayonné par unité de surface par ce corps à la fréquence ν dans la direction d'ascension polaire β et d'azimut \varphi , par unité de fréquence et par unité d'angle solide. La luminance L_{\Omega \nu}^o(\nu, T) d'un corps noir est indépendante de la direction et elle est exprimée par la loi de Planck.
  • L' éclairement monochromatique K_{\Omega \nu} (\beta, \varphi, \nu) (unité: W m−2 Hz−1 sr−1) est le flux reçu par une surface unité dans la direction d'angle polaire β et d'azimut \varphi , par unité de fréquence et par unité d'angle solide. L'éclairement est égal à la luminance du rayonnement ambiant. En particulier, si le corps est soumis au rayonnement à l'intérieur d'une cavité à rayonnement isotrope en équilibre thermique, la luminance et l'éclairement de ce corps sont déterminés par la loi de Planck.
  • L' absorptivité monochromatique directionnelle a_{\nu}^{\prime}(\beta, \varphi, \nu, T) est la fraction de flux d'éclairement incident de fréquence ν absorbée dans la direction ( \beta, \varphi ) par un récepteur themique de température T.
  • L'émissivité monochromatique directionnelle \varepsilon_{\nu}^{\prime}(\beta, \varphi, \nu, T) est le rapport entre la luminance monochromatique d'un radiateur de température T à la fréquence ν dans la direction ( \beta, \varphi ) et celle d'un corps noir rayonnant à même température :
\varepsilon_{\nu}^{\prime}(\beta, \varphi, \nu, T) = \frac{L_{\Omega \nu}(\beta, \varphi, \nu, T)}{L_{\Omega \nu}^o(\nu, T)} .

Limitations

Grandeurs intégrales du rayonnement

L'égalité des flux d'absorption et d'émission ne s'exprime en toute généralité que par le biais de l'absorptivité monochromatique directionnelle et de l'émissivité monochromatique directionnelle. Mais ces coefficients, qui décrivent l'absorption et l'émission pour une fréquence et dans une direction données, ne sont en général pas connus. En règle générale, on connaît seulement, pour chaque matériau, l' émissivité monochromatique hémisphérique \varepsilon_{\nu}(\nu, T) , intégrée sur un demi-espace, le flux directionnel d'émission global \varepsilon^\prime(\beta, \varphi, T) , intégré sur tout le spectre, ou encore l' émissivité hémisphérique \varepsilon(T) , intégré sur le demi-espace et sur toutes les fréquences. L'égalité de ces grandeurs avec les paramètres d'absorption correspondants ne s'applique alors qu'à des cas particuliers, surtout si les flux d'absorption directionnels dépendent aussi de la direction et de la fréquence du rayonnement incident, et donc ne sont pas, contrairement à l'émissivité, des coefficients liés aux propriétés du corps.

Les cas les plus importants pour lesquels la loi de rayonnement de Kirchhoff s'applique malgré cela, sont les suivants :

  • pour les surfaces rayonnantes diffuses (ou rayonnant de façon isotrope) l'absorptivité hémisphérique est égale à l'émissivité monochromatique et à l'émissivité monochromatique hémisphérique :
    a_{\nu}(\nu, T) = \varepsilon_{\nu}(\nu, T) = \varepsilon_{\nu}^\prime(\nu, T)
  • pour les surface rayonnantes grises (ou dont l'émissivité est indépendante de la fréquence) l'absorptivité directionnelle est égale au flux directionnel d'émission global et à l'émissivité directionnelle :
    a^\prime(\beta, \varphi, T) = \varepsilon^\prime(\beta, \varphi, T) = \varepsilon_{\nu}^\prime(\beta, \varphi, T)
  • pour les surfaces rayonnantes grises et diffuses, l'absorptivité hémisphérique est égale à l'émissivité hémisphérique et à la l'émissivité monochromatique directionnelle :
    a(T) = \varepsilon(T) = \varepsilon_{\nu}^\prime(T)

La loi de Lambert du rayonnement diffus décrit généralement avec une bonne précision le comportement des corps réels. La condition de corps gris est rarement satisfaite avec exactitude, mais on peut adopter cette hypothèse lorsque l'absorption et l'émission ne concernent qu'une petite partie du spectre pour laquelle on peut considérer l'émissivité comme constante.

  • Les corps non-métalliques (par ex. les corps non-conducteurs d'électricité, ou même les isolants, ou diélectriques) se comportent en général comme des radiateurs diffus. En outre, leur émissivité monochromatique directionnelle est dans de nombreux cas constante pour des longueurs d'onde supérieures à environ 1 à 3 μm. Pour le rayonnement dans le domaine des longues ondes (en particulier pour le rayonnement thermique à des températures qui ne sont pas trop élevées) les diélectriques peuvent souvent être considérés comme des corps gris diffus donc a(T)\approx\varepsilon(T) .
  • Pour les métaux au contraire (c'est-à-dire pour les conducteurs électriques) la dépendance directionnelle de l'émissivité ne peut être, en règle générale, approchée par la loi du rayonnement diffus. Du reste, l'émissivité spectrale n'est pas constante pour les grandes longueurs d'onde, si bien qu'ils ne rayonnent pas non plus comme des corps gris ; donc en règle générale on a a(T)\neq\varepsilon(T) . Par ailleurs, une couche superficielle oxydée ou des impuretés peuvent rapprocher les propriétés des surfaces métalliques de celles des diélectriques.

Même les diélectriques ne peuvent plus être assimilés à des radiateurs gris dès lors que des courtes longueurs d'onde sont en jeu, en particulier dans le cas de l'absorption de rayonnement solaire (lumière blanche). Les diélectriques possèdent typiquement, pour des longueurs d'ondes inférieures à 1 à 3 μm, une absorptivité faible et une émissivité relativement élevée. La lumière blanche appartient au domaine où leur absorptivité est négligeable, et sera donc, après intégration sur toute la plage fréquentielle, relativement peu absorbée ; l'énergie thermique appartient au domaine spectral des fortes émissivités, et sera donc, après intégration sur toute la plage fréquentielle, largement rayonnée. Cela vaut encore pour les métaux pour lesquels l'émissivité dans les courtes longueurs d'onde est souvent plus élevée que pour les grandes longueurs d'onde. Dans les deux cas, l'absorptivité globale et l'émissivité globale pourront prendre, selon les circonstances, des valeurs très différentes.

Le tableau suivant compare l'absorptivité hémisphérique globale a pour le rayonnement solaire et l'émissivité hémisphérique \varepsilon à T= 300 K pour quelques matériaux :

Matériau
a
\varepsilon
Carton goudronné noir 0,82 0,91
Brique rouge 0,75 0,93
Blanc de zinc 0,22 0,92
Neige propre 0,20...0,35 0,95
Chrome poli 0,40 0,07
Or poli 0,29 0,026
cuivre poli 0,18 0,03
cuivre, oxydé 0,70 0,45

Les surfaces peintes en blanc peuvent rester relativement froides une fois exposées au rayonnement solaire (faible absorption du rayonnement, forte émission de chaleur). D'autre part, les tôles métalliques soumises à des traitements de surface particulier peuvent s'échauffer rapidement (absorptivité de 0,95, émissivité <0,05, utilisation dans les capteurs solaires comme « piège à chaleur »). A la lumière du jour (c'est-à-dire dans le spectre solaire), les radiateurs peints en blancs peuvent apparaître clairs (faible absorption), tandis qu'ils emettent efficacement de la chaleur dans les grandes longueurs d'onde (forte émission). La neige ne fondra que lentement au soleil (la lumière solaire appartient au domaine de faible absorptivité de ce corps), mais fondra plus rapidement sous le rayonnement thermique d'un mur (le rayonnement thermique appartient au domaine de forte émissivité, donc de forte absorptivité).

Hors de l'équilibre thermique

L'égalité de l'absorptivité et de l'émissivité - doit être vérifiée dans les conditions d'équilibre thermique pour toute direction et toute fréquence. Lorsqu'on est hors d'équilibre thermique, des écarts peuvent être observés pour les raisons suivantes :

  • par un phénomène de diffraction à la surface, le rayonnement incident peut être dévié dans d'autres directions, si bien que dans ces direction, le flux absorbé sera plus important que ce qui est admissible pour un corps noir (\varepsilon > 1). Il n'y a pas là cependant d'infraction de la loi de conservation de l'énergie puisque l'énergie supplémentaire est seulement redistribuée et est manquante ailleurs (selon une autre direction). L'énergie est conservée si l'on somme sur toute l'ouverture angulaire.
  • un corps optiquement non-linéaire (par ex. un corps fluorescent) peut absorber l'énergie d'une fréquence et la restituer selon une autre fréquence. Là encore il ne s'agit que d'une conversion : la conservation de l'énergie ne s'applique pas à une seule fréquence, mais à tout le spectre.
Page générée en 0.257 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise