Matrice génératrice - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Définitions

Une notion naturelle apparait et donne lieu à la définition suivante :

  • La matrice génératrice G d'un code linéaire est la matrice de l'application linéaire d'encodage φ dans les bases canoniques.

L'égalité suivante est naturellement vérifiée d'après les propriétés des matrices :

\forall x \in \mathbb{F}_q^k \quad  x.G = \varphi (x) \in C \subset \mathbb{F}_q^n

On remarque que la dimension de la matrice génératrice est k x n car E est de dimension k et F de dimension n.

  • Deux matrices génératrices G et G' sont dit équivalentes si et seulement s'il existe une matrice carrée P d'un automorphisme de E tel que : G' = G.P.

Les codes de longueur k et de dimension n sur un même corps fini possèdent exactement les mêmes propriétés si leurs matrices génératrices sont équivalentes. En particulier, ils possèdent la même distance minimale. En effet, l'image de φ, c’est-à-dire le code reste inchangé par toute permutation préalable sur l'ensemble E, en particulier par un automorphisme. Il n'en est pas de même pour F, un automorphisme peut associer à deux vecteurs à une distance de Hamming de δ, deux vecteurs à une distance de un, ce qui détruirait toutes les propriétés du code.

Propriétés

Code systématique

Il existe une forme de la matrice génératrice particulièrement simple, ce qui donne lieu à la définition suivante :

La matrice prend alors la forme suivante :

^tx.G=(x_1,\cdots ,x_k). \begin{pmatrix} 1 & 0 & \cdots & 0 & c_{1 k+1} & \cdots & c_{1 n} \\ 0 & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & c_{k-1 k+1} & \cdots & c_{k-1 n} \\ 0 & \cdots & 0 & 1 & c_{k k+1} & \cdots & c_{k n} \end{pmatrix} =(x_1,\cdots ,x_k,b_1,\cdots ,b_{n-k})

Cette forme est particulièrement intéressante, le calcul du mot de code consiste à la détermination des n - k dernières coordonnées, car les k premières correspondent à celles du message initial. De plus, sous réserve d'absence d'altération, le décodage est lui aussi rapide, il consiste à ne considérer uniquement les n premières coordonnées du mot du code. On remarque au passage que le nombre de lignes de la matrice génératrice est égale à l'ordre du vecteur à coder (ici noté k), sans quoi le produit matriciel n'a pas de sens.

  • Les n - k dernières colonnes (cij) de la matrice génératrice sont appelées contrôles de redondance.
  • Les n - k dernières coordonnées (bj) d'un code systématique sont dit bits de contrôle ou parfois somme de contrôle.

Ces coordonnées correspondent exactement à la redondance, leur objectif est la détection ou la correction d'erreurs éventuelles. Dans le cas binaire, elles correspondent à la parité de sommes de lettres du message d'origine, on parle alors souvent de bits de parité.

Les codes linéaires peuvent tous se mettre sous cette forme :

  • Tout code linéaire est équivalent à un code systématique.

Ce qui signifie que, quitte à modifier la base de E, il est possible d'exprimer la matrice génératrice du code grâce à une matrice systématique.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise