Microscope à force atomique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le premier microscope à force atomique du monde, au musée de la Science de Londres.

Le microscope à force atomique (ou AFM pour atomic force microscope) est un type de microscope à sonde locale qui sert à visualiser la topographie de la surface d'un échantillon. Le principe se base sur les interactions entre l'échantillon et une pointe montée sur un microlevier. La pointe balaie (scanne) la surface à représenter, et l'on agit sur sa hauteur selon un paramètre de rétroaction. Un ordinateur enregistre cette hauteur et peut ainsi reconstituer une image de la surface.

Interactions et modes d'utilisation

Les atomes ont souvent tendance à s'attirer ; lorsque l'affinité des atomes est grande, ils se lient pour former une molécule ou un cristal, mais dans la plupart des cas, cette attraction est très faible et n'est perceptible qu'à très faible distance (il s'agit de forces de Van der Waals). À l'inverse, lorsqu'ils sont très proches, les atomes se repoussent du fait de la soumission des électrons du cortège électronique à la répulsion électrostatique. Il y aura donc une sorte de « distance d'équilibre » : si les atomes s'éloignent, une force les rappelle, et s'ils se rapprochent, une force les repousse.

On utilise donc cette attraction/répulsion entre les atomes surfaciques et la pointe sondeuse. La pointe est montée sur un levier très flexible ; la mesure de la flexion du levier (dans un sens ou dans l'autre) donne une mesure directe de la force d'interaction entre la surface sondée et la pointe.

Il existe plusieurs modes d'utilisation de l'AFM que l'on peut regrouper en 2 catégories: le mode contact (statique), les modes dynamiques: modulation d'amplitude (souvent appelé contact intermittent alors qu'il est possible qu'il n'y ait aucun contact entre la pointe et l'échantillon), nom commercial "tapping") et modulation de fréquence (nom historique non-contact résonant, ou near contact resonant, alors que la pointe peut indenter le matériau)

  • Le mode contact consiste à utiliser les forces répulsives : la pointe appuie sur la surface, elle est donc repoussée du fait du principe de Pauli, et le levier est dévié. La rétroaction s'effectue sur la mesure de la direction de la déviation.
  • Le mode modulation d'amplitude dit "tapping", de loin le plus utilisé, consiste à faire vibrer le levier à sa fréquence propre de résonance (typiquement de l'ordre de la centaine de kHz), avec une certaine amplitude. Quand la pointe interagit avec la surface, l'amplitude décroît (parce que la fréquence de résonance change). La rétroaction se fait alors sur l'amplitude d'oscillation du levier.
  • Le mode modulation de fréquence a été initialement utilisé avec en moyenne des forces attractives, avec des exemples de résolution atomique. Plus délicat à gérer, il permet contrairement au mode modulation d'amplitude de séparer directement l'effet des forces conservatives et dissipatives. Il est essentiellement utilisé sous vide. La rétroaction s'effectue soit sur la déviation de la fréquence de résonance..

Résolution

La résolution de l'appareil correspond essentiellement à la dimension du sommet de la pointe (le rayon de courbure). Mis à part le mode non-contact, dont on a déjà souligné la difficulté de mise en pratique, l'AFM utilise des forces répulsives, c’est-à-dire du contact. Il en résulte que les pointes trop fines s'usent rapidement - sans compter la détérioration de la surface. C'est là tout l'intérêt du mode tapping : puisque le contact est intermittent, les pointes s'usent moins vite, et on peut donc utiliser des pointes très fines (de l'ordre d'une dizaine de nm).

La résolution latérale est de l'ordre de la dizaine de nanomètres, mais la résolution verticale est par contre de l'ordre de l'ångström : on peut aisément visualiser des marches atomiques sur une surface propre.

Enfin, la surface visualisable dépend de la céramique piézoélectrique utilisée, et peut aller de 100 nanomètres carrés à environ 150 micromètres carrés.

Page générée en 0.284 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise