Moteur à ondes de détonation pulsées - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le moteur à ondes de détonation pulsées ou moteur à détonation pulsée (ou PDE en anglais pour Pulsed Detonation Engine) est un système de propulsion qui peut servir pour l'aéronautique ou l'astronautique.

Ce type de moteur a été développé afin d'améliorer l'impulsion spécifique de la propulsion par rapport aux fusées chimiques classiques.

Il utilise le concept très proche de celui du pulsoréacteur. La différence principale est que le pulsoréacteur assure une déflagration alors que le PDE produit une détonation. La déflagration produit des pressions d'éjection de l'ordre de deux à trois atmosphères à des vitesses subsoniques. La détonation a l'avantage de monter à des pressions de l'ordre de 30 atmosphères avec des vitesses d'éjection supérieures à Mach 5.

Ils partagent ainsi une certaine simplicité et des apparences très proches, mais les résultats sont considérablement différents. En réalité, les moteurs PDE sont souvent des pulsoréacteurs dans lesquels on assure la transition de la déflagration à la détonation au cours du trajet des gaz vers la sortie de la tuyère.

Principe

Des détonations utiles

Le moteur est simple dans son principe : le PDE est un tube dans lequel on fait détoner un mélange oxydant/réducteur qui est aussitôt éjecté à grande vitesse par un mécanisme de purge (blowdown). L'intérêt est d'avoir ici une combustion à volume constant derrière l'onde de choc produite, qui a une efficacité thermodynamique plus grande que la combustion à pression constante utilisée dans la combustion chimique classique. Les détonations doivent être répétées à une fréquence rapide afin de produire une poussée moyenne élevée.

Un cycle PDE

Le phénomène principal est la propagation d'une détonation. Les différentes étapes sont récapitulées ci-après :

Principe de fonctionnement d'un PDE
  • Étape 1 : c'est l'initiation qui crée la détonation. Il existe deux sortes d'initiations : la directe qui nécessite l'apport d'une grosse quantité d'énergie et celle par transition (ou DDT en anglais: Deflagration to Detonation Transition) qui est plus simple à obtenir.
  • Étape 2 : dans le tube fermé à une extrémité, la détonation (qui est constituée d'une onde de choc suivie par une zone de réactions chimiques) se propage en direction de l'extrémité ouverte. Directement derrière l'onde de choc, les gaz brûlés sont mis en mouvement. Mais, comme du côté fermé au contact de la paroi, la vitesse est nulle, des ondes de détente (ondes de Taylor) doivent se former afin de respecter cette condition aux limites. Au final, la phase de propagation consiste en un train d'ondes constitué d'une onde de choc suivie d'une succession d'ondes de détente se déplaçant vers l'extrémité ouverte du tube.
  • Étape 3 : une fois que l'onde de choc a atteint l'extrémité ouverte, les gaz brûlés sont expulsés et l'onde de choc se transmet sous forme d'une onde semi-circulaire dans l'environnement externe du tube. À l'interface entre l'intérieur et l'extérieur du tube, une onde réfléchie se crée aussi : cela peut être une onde de choc ou de détente selon la composition du mélange. Cette onde réfléchie se propage en arrière dans le tube.
  • Étape 4 : L'onde réfléchie atteint finalement l'extrémité fermée du tube. Sur son parcours, elle a entraîné une chute de pression dans le tube afin d'égaliser les pressions internes et externes. À la fin de cette étape, le tube peut être à nouveau rempli et un nouveau cycle peut commencer.

Principaux paramètres de conception

Les grandeurs caractéristiques d'un PDE sont les suivantes : la poussée, la fréquence de détonation, la rapport de mélange des combustibles, les conditions initiales (P,T) dans le tube, le diamètre du tube, la masse du moteur et le rapport poussée/masse.

La performance

Dans une première approche et en négligeant toutes les forces de friction aux parois, on peut dire que la force de poussée est produite uniquement par la pression qui s'exerce sur les parois du tube. Cette pression s'évalue par différents modèles (analytiques ou numériques). On en déduit alors l'Isp par la formule:

 I=S\int_{0}^{T}\triangle P(t)dt

où S est la section du tube, \triangle P est la différence de pression sur les parois et T la durée du cycle.

Calcul de la poussée moyenne

On suppose ici que le tube a un diamètre constant sur toute sa longueur. Trois paramètres définissent sa géométrie : le diamètre d, la longueur L et la fréquence des cycles de détonation. La poussée moyenne est calculée en multipliant l'impulsion d'un cycle simple par la fréquence des cycles:

T=I\cdot V \cdot f=I\cdot\frac{\pi\cdot L\cdot d^2}{4}\cdot f

Fréquence limite

La fréquence des cycles dépend principalement de la longueur L du tube. Comme la poussée est directement proportionnelle à la fréquence, il est important d'estimer la fréquence maximum possible à laquelle l'engin peut fonctionner. Cette fréquence maximum de cycle correspond à une durée de cycle minimum tcycle. Le cycle d'un PDE peut être découpée en trois phases : le remplissage, la détonation et l'expulsion ; d'où :

tcycle = tremplissage + tdetonation + texpulsion

Les calculs montrent que le temps pour la détonation et l'expulsion est égal à 10 \ t_{CJ}tCJ est le temps mis par l'onde de détonation pour parcourir le tube:

 t_{CJ}=\frac{L}{U_{CJ}}

L'impulsion est maximale après cette durée qui correspond au début de surpression négative sur la paroi du tube. Le temps de remplissage, lui, peut être estimé grossièrement en supposant une durée constante de remplissage :

t_{remplissage} =\frac{L}{U_{remplissage}}

Au final, on en déduit la fréquence maximale de cycle :

 f_{max}= \frac{1}{L}\cdot\frac{1}{\frac{10}{U_{CJ}}+\frac{1}{U_{remplissage}}}

Les premières recherches

Les détonations appliquées à la propulsion ont été étudiées seulement dans les cinquante dernières années à cause des difficultés techniques liées au mélange à haute vitesse du combustible et au contrôle de cette détonation avec un rapport de mélange donné.
Le concept de PDE remonte aux travaux de Hoffmann, qui parvint à initier des détonations intermittentes avec des mélanges d'hydrocarbures liquides (benzène) et gazeux (acétylène). La recherche d'un optimum de performance pour la fréquence des cycles de détonation fut néanmoins infructueuse et il fallut attendre les travaux de Nicholls avec des opérations simple et multi-cycles sur des mélanges hydrogène/air acétylène/air. Les expériences étaient constituées d'un simple tube à détonation, ouvert d'un côté et muni du côté fermé d'un système d'injection co-annulaire pour l'oxydant et le réducteur. La question se pose aujourd'hui de savoir si les ondes périodiques mesurées dans ces expériences étaient réellement le résultat de détonations ou si ce n'étaient que des formes de déflagrations à haute vitesse.

Page générée en 0.401 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise