Ils sont biodégradables, mais avec une durée moyenne de demi-vie de deux ans et plus (selon conditions écologiques et de température). De plus, les plus « gros » PBDE (fortement bromés) se décomposent en PBDE plus petits encore plus bioaccumulables tels que penta- et hexa-BDE.
Les risques et caractéristiques de persistance, varient selon le temps de demi-vie du produit dans l'environnement considéré. Le mode de désintégration est le même que pour les polychlorobiphényles. Ce mode dans les sédiments, dans les eaux de surface et dans les sols est favorisé par la présence de certains microorganismes facilitant le processus de dégradation. Leur temps de demi-vie est réduit dans ces environnements.
Les PBDE ont une forme chimique très proche de celle de la thyroxine, une hormone thyroïdienne. Ils peuvent ainsi interférer avec le système endocrinien en inhibant l’activité de l’enzyme-hormone sulfotransférase estrogène.
Cet effet a été remarqué chez les oiseaux, les reptiles, les poissons et chez les mammifères.
Ce dérèglement hormonal entraîne des modifications dans la reproduction et permet la malformation chez certaines espèces. Chez le rat, les PBDE avancent la puberté et augmentent le risque de cancer de la mamelle.
Les valeurs présentées ci-dessus ont été mesurées majoritairement par deux techniques par chromatographie en phase gazeuse ou par chromatographie liquide couplé à un spectromètre de masse.
Dans un premier temps, dans les deux cas il faut préparer les échantillons. La phase de préparation de l’échantillon dépend de la nature de la matrice.
Premièrement, il y a une phase de prétraitement pour les échantillons dont la matrice n’est pas de l’eau (boue, sol, sédiment, tissus biologique, air, etc.). Cette étape consiste à faire sécher les produits afin de permettre une meilleure extraction par les solvants organiques. Il est possible de sécher par différentes méthodes par séchage à froid, par séchage chimique (Na2SO4), par adsorption sur silice ou sur aluminium et par séchage à chaud, mais pour cette méthode, il faut éviter de chauffer à plus de 40°C, car les PBDE subissent un altération. Pour les échantillons sous forme gazeuse, ces derniers sont passés dans un filtre en fibre de verre ou à travers d’une mousse de polyuréthane. Pour ce qui est de l’extraction des PBDE, il faut les transférer dans un solvant organique. Par contre, la nature de la matrice est un grand problème dans cette partie puisque dans l’échantillon à analyser, une grande partie des composés présents dans l’échantillon pourraient interférer dans l’analyse et que certaines matrices ne sont pas compatibles avec des solvants organiques tel que les boues, les tissus organiques, les œufs, les échantillons purifiés contenus dans les matériaux de filtration de l’air, etc. Par conséquent, les solutions employées seraient l’extraction de Soxhlet de type liquide-solide, à l’aide d’une colonne chromatographique, l’extraction de solvant accéléré (ESA), l’extraction de micro-onde assistée (EMA), l’extraction de fluide supercritique ou encore avec l’extraction avec de l’eau chaude pressurisée.
Ensuite, pour ce type d’échantillon, il n’y a pas d’étape de prétraitement. Il faut uniquement effectuer une extraction. Pour ce faire il est possible d’employer plusieurs méthodes, soit l’extraction liquide-liquide, ou encore avec une extraction gel-lipophilique en combinaison avec de l’acide formique ou avec une extraction avec l’emploi d’une phase solide. Cette dernière technique est plus efficace pour les matrices de type sanguin.
Cette étape permet de retirer un plus grand nombre d’impuretés ou de produits non désirés lors de l’analyse. Pour les composés sulfurés présents dans les échantillons solides (boue, sédiment, sol, etc.) il est possible de les extraire par une réaction avec du sulfite de tétrabutyle d’ammonium ou avec un traitement au cuivre. Pour ce qui est des autres molécules principalement les lipides ou les autres grosses molécules qui pourraient être présentes dans l’échantillon, tout dépend encore une fois de la nature de la matrice. Pour les échantillons plasmatiques ou de sérum, il est possible d’extraire les lipides par réaction enzymatiques. Deux types de techniques peuvent être employés pour les autres types de matrice. D’abord, une technique non destructive, qui emploie la chromatographie perméable de gélation (GPC), permet de séparer les grosses molécules et les lipides de l’échantillon, par contre, cette technique ne permet pas de séparer les différents composés organohalogénés dont les PBDE. La seconde technique est de type destructive. Cette technique emploie un traitement à l’acide sulfurique de manière directe ou avec l’aide d’une colonne de silice. Par contre, cette technique exige un grand nombre d’extraction ainsi qu’une étape de saponification des lipides.
L’analyse s’effectue comme mentionné plus haut par chromatographie gazeuse. La technique reste sensiblement la même, seuls les instruments diffèrent, voir tableau ci-dessous.
De plus, il faut mentionner qu’il faut faire attention aux résultats obtenus, car il est possible d’obtenir des résultats erronés dus à la matrice de départ, ainsi que sur les techniques d’extraction qui peuvent être imprégnées d’une très grosse erreur de manipulation.
Tableau 2. Différentes techniques d’analyse et leurs références
Cette méthode d’analyse est moins problématique qu’en chromatographie gazeuse, car en GC, les composés qui sont fortement halogénés peuvent subir des altérations ou des dégradations thermiques dues à la volatilisation du composé. De plus, la spectroscopie de masse (MS) peut avoir certains problèmes pour le type de composés à analyser. La MS ne fournit pas une assez grande sensibilité pour les composés hautement halogénés. Pour éviter ce type de désagrément qui peut être employé LC-MS.
Il faut d’abord, mentionner quelques caractéristiques du détecteur pour ce type d’analyse. Puisque pour qu'un détecteur de spectrométrie de masse détecte les ions, il faut pouvoir ioniser les PBDE qui sortent de la colonne chromatographique. Pour ce faire, il faut employer un appareil qui ionisera les produits à la sortie de la colonne. Dans le cas des PBDE, il fut employé un APPI. Deux modes existent pour l’APPI, le mode positif et le mode négatif. Le mode positif fonctionne de la sorte qu’il est produit un ion radicalaire positif (M.+) tandis que par le mode négatif, un ion négatif qui a réagi avec l’oxygène présent dans l’air pour former l’ion [M-Br + O]-. Le choix du type de mode dépend du produit analysé. Pour les composés di- à penta-BDE le mode positif offre une bonne réponse et offre un rapport signal sur bruit pour l’hexa- et l’hepta-BDE qui est assez faible et pour les autres PBDE, il n’y a pas de signal. Pour le mode négatif, il n’y a pas de réponse pour les composés di- et tri-BDE, pour le tetra-BDE, le rapport signal sur bruit est faible, mais pour les composés penta- à déca-BDE la réponse est excellente.