Le temps newtonien définit le temps en physique, de la façon la plus simple à assimiler. On peut l'appeler aussi temps dynamique par opposition au temps cinématique.
L'idée essentielle est que le temps newtonien n'est plus un paramètre unicursal. Cela signifie que changer d'échelle de grandeur temps par une fonction t' = f(t) ne demande pour la vitesse qu'un changement V' = V/f'(t), ce qui est simplement l'expression naturelle d'un changement d'unités. Par contre au niveau de l'accélération, un nouveau terme apparaît, via f"(t). Il n'est donc pas possible de changer d'échelle de temps newtonien.
Le fait que toutes les horloges de Newton indiquent le même temps t rend ce temps, dit newtonien, universel et parfaitement bien défini conceptuellement. Expérimentalement, cela dépend de la précision des horloges : actuellement, la précision différentielle entre deux horloges est de 100 picosecondes, voire 10 picosecondes, cependant l'exactitude du Temps atomique international est à moins de 50ns. Le temps des éphémérides, créé en 1960, était tel que l'année tropique 1900 contenait par définition 31.556.925,9747 secondes. Ce temps a été abandonné en 1967.
Les futures horloges optiques à ions piégés permettront une précision relative de 10-17, alors que l'horloge à césium actuelle, fonctionnant à 9,192 631 77 GHz permet une précision de 10-15.
Si la vie des hommes est rythmée par l'alternance jour-nuit, le TAI, corrigé de tous les effets de relativité, en est indépendant. Rien ne contraint ce temps à rester calé sur la rotation terrestre, comme on le fait actuellement pour l'UTC qui en est dérivé et reste calé grâce à des secondes intercalaires.
Soit un mouvement décrit par un point matériel M sur une courbe, où l'abscisse curviligne sera nommée s. Le mouvement est donné par le diagramme horaire: s = s(t).
A ce stade, le paramètre t est le temps cinématique avec une grandeur définie à une échelle près, c’est-à-dire qu'on peut le remplacer par toute autre grâce à une fonction monotone croissante de t' = f(t). Comme pour la température Celsius ou Réaumur ou Farenheit, la valeur numérique indiquée par l'horloge doit obligatoirement être fournie avec son abaque de correspondance avec d'autres horloges, pour avoir une traçabilité de la mesure.
Le temps cinématique est donc ce qu'on appelle une grandeur repérable mais non mesurable.
Voici deux horloges simples pour illustrer cette définition.
Dans le vide, on lâche une petite masse sphérique M qui rebondit "parfaitement" sur un marbre horizontal.
Ce problème s'appelle problème de la chute libre, la trajectoire est verticale, et la résolution du problème a conduit Galilée (1564-1642) à écrire :
Au bout du temps :
La masse M rebondit parfaitement sur le marbre et recommence son mouvement en sens inverse, remontant à la hauteur H. Elle atteint sa position de départ au temps 2To, et recommence indéfiniment ce mouvement périodique de période 2To.
Tout mouvement sans frottement dans un puits de potentiel, définit ainsi une fonction périodique s(t), dont la fonction réciproque définit une horloge absolue.
La plus commune est certainement l'horloge à balancier de Huygens (1629-1695). En effet, même si le mouvement du centre de gravité est relativement difficile à exprimer, l'horloge présente l'immense avantage que la déperdition inévitable d'énergie est compensée par l'énergie fournie par la chute lente de poids grâce au mécanisme de l'échappement à ancre, selon une manière bien calculable.
Une bonne horloge à balancier donne le dixième de seconde sur la journée. On la recale chaque midi sur l'horloge astronomique plus précise. C'est donc un simple garde-temps, ou horloge esclave, pilotée par l'horloge céleste.