On considère un point se déplaçant sur une courbe. On repère la position de ce point à un temps t, par son abscisse curviligne s(t). En cinématique, le graphe [t,s(t)] s'appelle diagramme horaire du mouvement.
On s'en sert utilement pour les croisements des trains et l'évaluation des correspondances ou les aiguillages.
En outre, il est essentiel de bien comprendre la différence entre la donnée de la vitesse en fonction du temps ou de l'abscisse curviligne.
C'est un exemple classique :
On se demande où et quand se croisent le train T1 et le train T2 sachant que T1 part à 15 h et T2 part à 16 h.
Réponse : le diagramme montre que les arrêts ne jouent aucun rôle dans ce problème, les trains se croisent donc à 17 h, à Valence, ville telle que Paris-Valence = 480 km, Valence-Marseille = 240 km.
Il existe une multitude de problèmes de même sorte dans les recueils de préparation au Certificat d'études primaires.
Un cas un peu plus difficile est celui-ci :
Un jongleur lance verticalement la balle B1 qui monte à la hauteur H.
De l'autre main , il lance la balle B2 d'un mouvement identique, juste au moment où la balle B1 commence à redescendre :
où se croisent les balles ?
La réponse est : à (3/4) H car le croisement aura lieu à la moitié du temps de descente de la balle B2 (il suffit de tracer les 2 diagrammes horaires, pour s'en assurer).
La cinématique de la jonglerie est un joli exercice de permutation entre les différents mouvements de mains et de balles.
Cet exemple est célèbre, car il permet de voir "tourner la Terre" (cf pendule de Foucault), sans regarder les étoiles, mais simplement en regardant un phénomène cinématique interne au référentiel Terre. Pour simplifier l'explication, nous supposerons l'expérience faite au pôle Sud S : sur deux voies circulaires, centrées sur l'axe des pôles, circulent deux scooters des neiges de même vitesse angulaire ABSOLUE,ωo (par rapport aux étoiles, par conséquent), mais l'un vers l'Est et l'autre vers l'Ouest. Ils se croisent en un point qui dérive continuellement vers l'Est, et qui fait 15° par heure, c’est-à-dire un tour par jour. Pour s'en convaincre, refaire le raisonnement en Arctique, au pôle Nord. D'autre part, les traces des 2 scooters ne seront pas les mêmes, car, par rapport au sol de la Terre qui tourne, leur vitesse n'est pas la même :
ω1: = ωo + ΩT;ω2: = ωo − ΩT
C'est historiquement le premier cas de mouvement périodique, pouvant théoriquement constituer une HORLOGE. Mais Torricelli n'en considérait pas la réalisation pratique : seul le phénomène mathématique l'intéressait.
Il s'agit du cas: v^2(s) = Vo^2-2.a.|s|.
Prendre le cas où au temps initial, le mobile M se trouve en s=0, avec la vitesse +V0 : il se dirigera vers la droite jusqu'à ce que s = S1 = sqrt( Vo^2/2a). Ce parcours aura pris le temps t1 (précisément celui calcule dans l'exemple du paragraphe précédent : V0/2a = sqrt(2S1/a).
Mais le mobile ne s'arrête pas là, comme l'a bien analysé Galilée. L'accélération restant négative, le mobile repart dans l'autre sens, avec la même vitesse aux mêmes points : donc c'est juste le même mouvement mais en sens inverse, et le mobile se retrouve à l'origine au temps 2t1, avec la vitesse -Vo. Il refait alors vers la gauche exactement ce qui s'est passé à droite. Au total, le mouvement est périodique de période T = 4t1, et se compose de deux mouvements uniformément accélérés.
Expérimentalement, Galilée opérait sur deux plans inclinés formant un V ; pour des raisons pratiques, le coin est alésé, et il vaut mieux prendre un boulet lourd qui roule sans glisser, avec une faible résistance au roulement. On peut "tricher", pour compenser le léger amortissement, en inclinant en cadence le chemin de roulement en V, de manière que S1 reste le même.
Si une bille rebondissait de manière élastique sur une raquette parfaite, on aurait exactement le même type d'horloge, à condition de contrôler le mouvement de la raquette (cf Problème de Fermi-Ulam chaos contrôlé ).
Ceci est un exemple très simple de mouvement dans un puits de potentiel