Théorème de Tychonov - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Le théorème de Tychonov est un théorème de topologie qui affirme qu'un produit d'espaces topologiques compacts est compact au sens de la topologie produit. Il a été publié en 1930 par le mathématicien russe Andreï Nikolaïevitch Tikhonov. Il a plusieurs applications en topologie algébrique et différentielle, particulièrement en analyse fonctionnelle, pour la preuve du théorème de Banach-Alaoglu-Bourbaki et le compactifié de Stone-Čech.

Si ce théorème ne choque pas l'intuition dans le cas d'un produit fini, sa validité dans le cas d'un produit quelconque est plus étonnante, et se démontre par une méthode non constructive faisant appel à l'axiome du choix. On notera qu'il est aussi possible de se passer de l'axiome du choix dans le cas d'un produit dénombrable d'espaces métriques compacts, ce que nous montrons dans la première partie de cet article, la deuxième étant consacrée à la démonstration dans le cas général.

Démonstration dans le cas d'un produit dénombrable de métriques

Dans le cas du produit dénombrable de métriques, l'idée essentielle est de faire de ce produit un espace lui aussi métrique en le munissant d'une distance appropriée, ce qui permet ensuite d'utiliser le théorème de Bolzano-Weierstrass: le produit X sera compact si et seulement si de toute suite d'éléments de X on peut extraire une sous-suite convergente.

Page générée en 0.157 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise