dans RevModPhys 23,1951,21-68 , on constate que la méthode des opérateurs d'échelle était bien connue à l'époque ( cf aussi Durand, CRAS1950,230,273):
L'idée est classique :
soit A = 1/2 -a/r -d/dr et B = 1/2 - b/r +d/dr en unités "bien choisies".
A et B sont opérateurs sur les fonctions de carrés sommables sur [0, infty[.
Ils sont opérateurs conjugués pour a = b .
et l'équation de Leibniz-S s'écrit :
A(l+1)B(l+1) Snl = (n-l-1)Snl/r
En multipliant par Snl et en sommant il apparaît immédiatement que n-1> l ; et B S = 0 pour l = n-1 d'où la valeur de S "circulaire" : S(r) = r^n .exp ( -r/2)
Qq calculs permettent de trouver que
S(n+1, l) = r A(n) S(n,l) S(n-1,l) = rB(n) S(n,l) .1/[(n-1-l)n+l)]
et toutes sortes de relations sur les polynômes de Laguerre.
L'équation du second ordre peut s'écrire : K(n,l) S(n, l-1) = A S(n,l) K(n,l) S(n,l) = B S(n, l-1) ( Durand p 449)
k+1)