Transfert d'énergie entre molécules fluorescentes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Le FRET en temps résolu

Généralités

La principale limite du FRET est liée au manque de sélectivité spectrale des fluorophores utilisés ainsi qu’à la difficulté de s’affranchir des signaux parasites (bruit de fond). Ceci a des conséquences sur la sensibilité des tests mis en œuvre. Ainsi, l’utilisation de traceurs présentant des propriétés originales de luminescence a permis de mettre au point des tests plus sensibles en améliorant la résolution spectrale et temporelle du signal de FRET. Ces molécules sont des complexes formés par l’association d’un chromophore (cryptand ou chélate) et d’un cation lanthanide faisant partie du groupe des terres rares (europium, terbium…). La principale caractéristique des lanthanides vient de leur durée de vie de luminescence relativement longue (de l’ordre de la milliseconde). La durée de vie de fluorescence de la plupart des fluorophores organiques et des protéines fluorescentes est de l’ordre de la nanoseconde, tout comme les fluorescences parasites (autofluorescence, diffraction de la lumière…). Grâce à cette propriété des ions lanthanides, les systèmes de détection de fluorescence en phase homogène et en temps résolu ont pu être développés. Ces systèmes reposent sur l’application d’un délai entre l’excitation de l’échantillon et la mesure du signal émis de manière à s’affranchir des fluorescences parasites à durée de vie courte. Cette résolution temporelle du signal permet ainsi d’améliorer le rapport entre le signal du traceur et le bruit de fond inhérent aux conditions du test sans qu’aucune étape de séparation des espèces ne soit nécessaire.

Les fluorophores

Le donneur

Figure 3. Les chélates et cryptates de terre rare. A. Structure des chélates et cryptates de terre rare. B. Transfert d’énergie entre le chromophore (chélate ou cryptate) et l’ion europium. C.I.S = croisement intersystème.

Au cours des années 1970, les complexes luminescents de lanthanide se sont révélés des candidats intéressants comme marqueurs dans le développement de systèmes d’analyse et de diagnostic. En effet, l’utilisation des chélates et cryptates de terre rare a permis de mettre au point des systèmes de détection en temps résolu caractérisés par une réduction du bruit de fond. Chacune de ces sondes est constituée d’un chromophore organique et d’une terre rare (principalement europium et terbium). La complexation de l’ion par le chélate est basée sur une interaction réversible alors que dans la structure du cryptate, le cryptand encage irréversiblement l’ion en le protégeant des interactions environnementales (extinction de fluorescence par les molécules d’eau…) (Figure 3.A). La présence de groupements réactifs au niveau du chromophore permet de greffer le complexe à des biomolécules (anticorps, antigènes…). Une propriété intéressante de ces chromophores est leur capacité à collecter l’énergie excitatrice (effet d’antenne) et à la transférer sur le cation lanthanide. L’antenne est nécessaire du fait de la faible capacité d’absorption de la lumière par les lanthanides qui rend leur excitation directe difficile (< fluorophores organiques conventionnels). Ainsi, l’excitation du complexe de lanthanide par une lumière incidente (laser, lampe flash…) contribue à peupler les niveaux vibrationnels singulets de haute énergie du chromophore (transition S0 → S1, S2) (Figure 3.B). Le retour vers l’état fondamental S0 est influencé par la présence du lanthanide qui favorise le croisement intersystème permettant de peupler les états triplets (T1) du chromophore. Finalement, le passage T1 → S0 induit un transfert d’énergie favorisant le remplissage des niveaux excités du lanthanide (5D0 pour l’europium et 5D4 pour le terbium) dont la composante de désexcitation par voie radiative est responsable de l’émission luminescente.

Le transfert d’énergie intramoléculaire existant au sein de ces complexes est responsable du grand déplacement de Stokes (de l’ordre de 200 – 250 nm) qui permet de s’affranchir de l’interférence due à la source d’excitation. Ce décalage est la conséquence de la séparation des fonctions absorption (par le chromophore) et émission (par la terre rare) au sein du complexe. Ainsi, les chromophores organiques (chélate, cryptate) absorbent majoritairement dans l’UV et la partie bleue du spectre visible alors que les terres rares réémettent dans le vert – rouge : 560 nm pour le terbium et 605 nm pour l’europium. La longue durée de vie de cette émission (µs → ms) est principalement la conséquence des transitions électroniques particulières qui interviennent au niveau des terres rares. Cette caractéristique permet d’ailleurs l’utilisation de ces molécules dans des applications en temps résolu.

Dans les milieux biologiques classiquement utilisés, le complexe formé par le chélate et le lanthanide peut être dissocié en raison d’une faible stabilité de l’interaction (compétition entre l’ion lanthanide et les ions Mn2+, Mg2+, Ca2+ ou chélation du lanthanide par de l’EDTA), ce qui constitue un inconvénient. Dans le cas des cryptates de terre rare l’inclusion de l’europium dans une cage tridimensionnelle formée par le cryptand empêche ces phénomènes de dissociation conférant au complexe une très haute stabilité.

L’accepteur

Transfert d’énergie : sélectivité temporelle et spectrale

La sélectivité temporelle

La sélectivité spectrale

Page générée en 0.091 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise