La différentiabilité d'une fonction f entre deux variétés différentielles M et N se définit en procédant à la lecture de f dans des cartes locales au voisinage de chaque point.
Formellement, on considère deux variétés M et N de classe Ck et un entier j inférieur à k. Une application
Si on considère de nouvelles cartes locales, la régularité des applications de changement de cartes assure que les fonctions fφ',ψ' correspondantes seront régulières, ce qui montre la cohérence de la définition.
Il est un peu plus délicat de définir la notion de différentielle d'une application différentiable, puisque cela demande d'introduire au préalable les vecteurs tangents. Cependant, le rang de la différentielle de fφ,ψ au point m ne dépend pas des cartes choisies. On parle notamment d'immersion si ce rang est égal en tout point à la dimension de M, de submersion s'il est égal en tout point à la dimension de N.
La composée d'applications de classe Cj entre deux variétés, quand elle existe, est de classe Cj. Les variétés différentielles de classe Ck forment une catégorie dont les morphismes sont les applications de classe Ck.
Deux variétés différentielles M et N de classe Ck sont isomorphes lorsqu'il existe un Ck-difféomorphisme de M dans N (c'est-à-dire une application bijective de classe Ck ainsi que sa réciproque).
Du point de vue du calcul différentiel, il est possible d'identifier deux variétés isomorphes. La géométrie différentielle a pour objet premier l'étude des structures différentielles modulo la relation d'isomorphisme.
Alors que la théorie des variétés différentielles est foncièrement différente de celle des variétés topologiques, le degré de différentiabilité utilisé est sans importance autre que technique. On a en effet le théorème
Ce théorème s'interprète naïvement en disant qu'on peut retirer d'un atlas Ck1 des cartes qui se recollent mal (dont les applications changement de carte ne sont pas de classe Ck2). On obtient alors un atlas avec moins de cartes, mais de classe Ck2. A l'extrême s'il ne reste plus qu'une seule carte dans l'atlas (la variété étant alors homéomorphe à un ouvert de Rn), dans ce cas l'atlas est analytique.
On connaît au contraire des variétés topologiques qui admettent plusieurs structures différentielles non isomorphes. Le premier exemple, découvert en 1956 par John Milnor, est la sphère de dimension 7. Il existe par ailleurs des variétés topologiques qui n'admettent aucune structure différentielle (Michel Kervaire, 1960).
Les questions d'existence et d'unicité ne se posent qu'à partir de la dimension 4, puisqu'une variété topologique de dimension inférieure à 3 possède une unique structure différentielle. La dimension 4 est la première dimension pour laquelle l'existence et l'unicité sont mises en défaut.
Cette dimension joue à plusieurs égards un rôle particulier : on sait ainsi que pour toute valeur de n différente de 4, l'espace
Soit M une variété différentielle et
Autrement dit, un point p est dans N ssi les d dernières coordonnées de φ(p) sont nulles. La partie N est alors naturellement munie d'une structure de variété Ck de dimension n-d, induite par celle de M ; à savoir la classe de Ck-équivalence dans N de l'atlas formé par les cartes φ dont les d dernières coordonnées s'annulent sur N.
Ainsi, certaines courbes et surfaces classiques du plan ou de l'espace forment des sous-variétés, mais pas toutes, par exemple à cause de l'existence de points multiples. Si la courbe ou la surface est définie de façon paramétrique, on peut donner des conditions suffisantes sur l'application de paramétrage pour que l'image soit une sous-variété, ce qui conduit à la notion générale de plongement. On peut aussi donner des conditions pour qu'une courbe ou surface définie par une ou des équations soit une sous-variété. L'équivalence locale entre ces différents points de vue est donnée par le théorème des fonctions implicites.
De façon générale, un plongement permet d'inclure une variété dans une autre en respectant la structure différentielle. Une application p d'une variété X dans M est appelée plongement quand p est une immersion et un homéomorphisme sur son image Y=p(X). Dans ce cas, Y est une sous-variété de M. Le théorème de plongement de Whitney montre que toute variété différentielle peut être plongée dans un espace
On dispose d'une généralisation de la définition d'une sous-variété par équation. Si
Notamment, les variétés de codimension 1 sont appelées hypersurfaces de M. Elles peuvent être obtenues, localement, comme images réciproques pour des fonctions numériques définies sur M et sans point critique.