Anneau principal - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Généralisations

Les anneaux principaux disposent de tous les théorèmes qui fondent l'arithmétique sur l'ensemble des entiers relatifs. En revanche, il existe de nombreux anneaux commutatifs unitaires et intègres qui ne sont pas principaux.

Géométrie algébrique

La géométrie algébrique étudie principalement les variétés algébriques, c'est-à-dire les hypersurfaces d'un espace vectoriel de dimension n sur un corps K définies comme les racines d'un idéal de l'anneau des polynômes à n indéterminées. Ainsi la sphère de R3 est définie comme les racines des polynômes à coefficients réels multiple de X2 + Y2 + Z2 - 1. Or l'anneau des polynômes à plusieurs variables n'est pas un anneau principal.

Un anneau factoriel est par définition un anneau où un analogue du théorème fondamental de l'arithmétique est vérifié. Le lemme d'Euclide est vrai dans un tel anneau, ce n'est en revanche pas le cas du théorème de Bezout, qui caractérise en fait les anneaux principaux parmi les anneaux factoriels. Les anneaux de polynômes en plusieurs indéterminées à coefficients dans un corps sont par exemple factoriels mais pas principaux.

Théorie algébrique des nombres

La solution utilisée pour les anneaux de polynômes n'est pas toujours pertinente. Les anneaux d'entiers algébriques, par exemple, ne sont pas toujours factoriels. Une autre approche permet néanmoins de retrouver une arithmétique analogue.

Les anneaux d'entiers algébriques sur un corps de nombres c'est-à-dire des extensions finies des nombres rationnels possèdent des idéaux non principaux. En revanche, il suffit d'une famille finie d'éléments pour générer tout idéal. Plus précisément, tout idéal d'un anneau d'entiers algébriques sur un corps de nombre A est un sous-A module disposant d'une base de cardinal égal à la dimension du corps de nombres, considéré comme un Q espace vectoriel. Un anneau A qui ne possède que des idéaux de type fini (c'est-à-dire engendré par une famille finie d'éléments, si l'idéal est considéré comme un A module) est dit noethérien. La théorie des anneaux noethériens dépasse celle de l'algèbre commutative, contexte des anneaux principaux.

Les bons anneaux d'entiers algébriques, c'est-à-dire ceux qui sont intégralement clos, disposent de propriétés supplémentaires. Ils vérifient les axiomes caractérisant la structure dite de Dedekind. Ces propriétés permettent d'établir une arithmétique encore analogue à celle des entiers relatifs. Les nombres premiers sont remplacés par les idéaux premiers et tout idéal admet une unique décomposition en idéaux premiers, résultat qui remplace le théorème fondamental de l'arithmétique perdu pour cette configuration.

Page générée en 0.029 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise